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ON CERTAIN ARITHMETIC FUNCTIONS OF
SEVERAL ARGUMENTS*

BY LEONARD CARLITZ

1. Introduction. Series of the type
(1) 2B, m,mn),
l,m,n
summed over all positive I, m, n satisfying the conditions

(2) (m,n) = (n,1) = (I,m) =1,

occur in a problem in additive arithmetic. The series (1) is
transformed into a series Z'y(l, m, n), now summed over all
positive I, m, n, where

7(l) m, ’ﬂ) = i /-‘(e, 1 g)ﬁ(el; fm, g”)'

e,f,9=1

The function u(e, f, g) may be defined by
1 for(m,n) = (nl)=(Um =1,
®  Tuso-

0  otherwise,

the summation on the left extending over all e|Z, f|m, g|n.

In this note we define a class of functions u satisfying rela-
tions of the type (3); the functions generalize, in several direc-
tions, the ordinary Mébius u-functions. We next define and
evaluate a class of generalized ¢-functions; they may be ex-
pressed in terms of u.

2. The u-Functions. For arbitrary positive k, s we define the

function u¢(m,, - - - , my) by means of
1 for Ms,
4 s(er, + ++, €p) =
@ e.zir:n.' wen k) {0 otherwise,

the k-fold summation on the left extending over all eilmi,
(¢=1, - - -, k), while M* is an abbreviation for the Cj,, simul-
taneous conditions

* Presented to the Society, February 29, 1936.
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(m;,,"-,mi,)=1, (ily"')is=1)""k;ia¢ib)'

Evidently by means of (4) u® may be calculated recursively. The
function is symmetric in the k arguments my, - - -, my.
In the case s=1, M* evidently reduces to m;=1, and thus

(5 ut(my, - -y my) = plma) - - - plme),

where u(e) on the right is the ordinary w-function; for s>1,
however, no such reduction is in general possible.
From (4) it follows at once that

(6) pe(l, 1,0, 1) =1,
In the next place it is not difficult to show that u*(m4, - - -, ms)
is multiplicative in the k arguments m,y, - + -, my. An arithmetic
function f(m,, - - -, my) is multiplicative provided
(7) f(ml, e ,mk) = Hf(pel’ cee, Pek>’

v4

where p is a typical prime, and

mi = H e, € = 35(?)-

Thus the calculation of w*(my, - - -, my) is reduced to the
calculation of

(8) Na(?817 ] Pek)y

where some of the e; may be equal to 0. Assume now that some
e;>1, say e;>1. Then comparing (4) for

o, por, - -, P with  perl per ... poE
leads at once to
©) pe(pey, - - -, p) =0,
if any e;>1. We may therefore suppose in (8) that
e =1 or 0, (i=1,---,k).

If e;=1 for ¢ values of 7, and ¢; =0 for the remaining % —¢ values,
we may use in place of (8) the simplified notation

(10) pe(pt1=?).
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Again, inspection of the defining equation (4) for the values
ml=o~o=m£=p, mt+1="’=mk=1,

shows that the function (10) is independent of k. We may
therefore shorten (10) to w*(p*) or even w’(f) when there is no
danger of confusion.

To calculate u*(p?) we again use (4). Assume first ¢ <s. Thus
the conditions M* are surely satisfied. Making use of (6), we
show by applying (4) for ¢=1, 2, - - - | {, that

(11) 'us(Pt):O for t=1,"',S'—'1,

For t=s, the conditions M® are not satisfied. For example,
for t=s, (4) becomes

we(1) + we(p?) = 0,
so that u*(p®) = —1. Generally for t=s, (4) implies
(12) 1+ Ceau®(p®) + Croput () + - - - + Crau®(p?) = 0.
For the moment, put u*(p*) =y,; then (12) implies
U —1 for t=0,---,5s—1,
13 C Vi =
1) i..z%"y {o for ¢z s.

To solve (13) for y;, we note that

w

¢
Z (= 1)"’—‘Cw,tz Ci,ivi

te=0 t=0

= Z (— l)w_icw,iyiz ("‘ l)w_tcw_i’t_.i = Yuw.

f=() t=1

Therefore we have
s—1
Yw = Z (— 1)w—tcw.t = (_ 1)w_8—1cw——1.8—17
t=0

as may be proved by an easy induction on s. Recalling the
definition of y,, we see that

(14)  p(p+) = (= 1)*"Coprres for £ 0.

It is now easy to evaluate u*(my, - - -, my) generally. We use
(11), (14), and the multiplicative property. Then in the first
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place, by (9), u® vanishes if any s is divisible by the square of
a prime. Assume therefore that each m; is the product of distinct
primes p;. Put

(15) mimsg - ¢ - My = Pi‘p;z « .. Pf::,.

Then if any ¢;<s, it follows from (11) that u*=0. If, however,
in (15) each ¢;=s, then u*>£0, and is determined by the follow-
ing formula:

w

(16) pelma, - -+ mi) = JI (= 1)41Ch 1,0,

=1
which holds generally for all m provided u(m,)#0, - - -, u(my)
#0. Formulas (15) and (16), together with u*(my, - - -, m;) =0
for u(myu(msy) + - - u(m;i) =0, determine u? in all cases.

3. An Application. By means of the general u*, we may trans-
form the series

(17) 2 B(mly ) mk);
M

summed over all positive m; satisfying the condition M* of (4).
Now by (4), the series in (17) equals

D Blmyy - -+ mi) D uten, - - -, €x)

(m)=1 elm
(18) = Z Z :u's(el) Ty ek)ﬁ(elml) Ty ekmk))
(m)=1 (e)=1
= Z 7(7”1; e ’mk))
(m)=1
where
(19) y(my, -+, mi) = D us(er, - - -, ex)Blewma, - - -, exm).

(e)=1

Formulas (18) and (19) effect the transformation.
The example mentioned in the Introduction is the special case
s=2,k=3.

4. The ¢-Functions. For arbitrary positive k, s we define the
function ¢*(my, + - - , my) as the number of sets of integers

{61, ey Ck}, e; (mod m;),
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for which W* holds; W* is an abbreviation for the Ci, simul-
taneous conditions
(61‘,, Tty Gy Mgyt mia) =1,
(G, « ++ yde =1, , b} iq # ).

Clearly ¢° is symmetric in the 2 arguments my, - - -, my. For
s=1, W*reduces to (e;, m;) =1, so that

ol m, - -y me) = d(ma) - - - G(ma),

where ¢(m) on the right is the ordinary ¢-function. In the other
extreme case, s =k, assume my= - - - =my; then clearly

¢k<m) tr )m) = ¢k(m))

where ¢i(m) is Jordan’s function. From the definition, it is evi-
dent that

¢s(1’1,...’1)=1.

Secondly it is not difficult to show that ¢° satisfies (7); in other

words, ¢° is a multiplicative function of m,, - - -, m;. We pro-
ceed to calculate
(20) 4’&(?6‘: Tt Pek)'

If some e;>1, (20) may be reduced further. Thus, if say e;>1,
it follows from the definition that

(21) ¢,(P317 Py, pek) = pd’s(Pel_l; Py, Pek)-

It is therefore necessary to calculate the function only in the
case ¢;=1 or 0. Exactly as in §2, if ;=1 for ¢ values and =0 for
the remaining 2 —¢ values, we replace (20) by the simpler nota-
tion

¢3(Pt1k—t) — ¢s(pt)’
for here again the function in question is easily seen to be in-
dependent of k.
The determination of ¢*(p!) involves no difficulty. It follows

from the definition that ¢*(p*) =p* for ¢ <s. For {=s, we may
show that

s—1
(22) $:(p9) = (p = D" Coppiip*™'".

1=0
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Indeed, by the definition,
PP = ¢ (p") = Croees(p — 1) + Cripmsr(p — D)7t A - -
so that

s—1

(23) $*(p9) = 2 Cri(p — 1),
=0
which may be identified with (22).
Again, expanding the right member of (23), we have

t

o' (pt) = 2 Coud, (— 1)FiC; ;pi

t=t—s41 =0
i

t
= 2 Cuipt= 2, (= 1)iC;;
im0

=0
12 j—s+1
t s—1
=pt+ 2 Coppi D (= 1)ITiC,,
j=s i=0

¢
=pt+ Z (= 1)i=571C j_1,61C4, ip 7

i=s

pt4 22 Coiptinr(p?)

i=s

2 Cuipt=ius(p?),
i=0

by (14). Therefore, by (21) and (9),

3( 1. , Sk
¢"(Pe‘, cee, ?ek) = p91+~"+ek Z f‘_u

fiZes Pl H

Finally, since both ¢* and u® are multiplicative,

pe(d, < - -, d)
¢a(m1’...’mk)=m1...mkz ______1____’___"_’
di|mi dy- - dy

and thus ¢° is expressed in terms of u°.
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