ON CERTAIN ARITHMETIC FUNCTIONS OF SEVERAL ARGUMENTS*

BY LEONARD CARLITZ

1. Introduction. Series of the type

(1)
$$\sum_{l,m,n} \beta(l,m,n),$$

summed over all positive l, m, n satisfying the conditions

$$(2) (m, n) = (n, l) = (l, m) = 1,$$

occur in a problem in additive arithmetic. The series (1) is transformed into a series $\sum \gamma(l, m, n)$, now summed over all positive l, m, n, where

$$\gamma(l, m, n) = \sum_{e,f,g=1}^{\infty} \mu(e, f, g) \beta(el, fm, gn).$$

The function $\mu(e, f, g)$ may be defined by

(3)
$$\sum \mu(e, f, g) = \begin{cases} 1 & \text{for } (m, n) = (n, l) = (l, m) = 1, \\ 0 & \text{otherwise,} \end{cases}$$

the summation on the left extending over all e | l, f | m, g | n.

In this note we define a class of functions μ satisfying relations of the type (3); the functions generalize, in several directions, the ordinary Möbius μ -functions. We next define and evaluate a class of generalized ϕ -functions; they may be expressed in terms of μ .

2. The μ -Functions. For arbitrary positive k, s we define the function $\mu^s(m_1, \dots, m_k)$ by means of

(4)
$$\sum_{e_i \mid m_i} \mu^s(e_1, \cdots, e_k) = \begin{cases} 1 & \text{for } M^s, \\ 0 & \text{otherwise,} \end{cases}$$

the k-fold summation on the left extending over all $e_i | m_i$, $(i=1, \dots, k)$, while M^s is an abbreviation for the $C_{k,s}$ simultaneous conditions

^{*} Presented to the Society, February 29, 1936.

$$(m_{i_1}, \cdots, m_{i_s}) = 1, \qquad (i_1, \cdots, i_s = 1, \cdots, k; i_a \neq i_b).$$

Evidently by means of (4) μ^s may be calculated recursively. The function is symmetric in the k arguments m_1, \dots, m_k .

In the case s = 1, M^s evidently reduces to $m_i = 1$, and thus

(5)
$$\mu^{1}(m_{1}, \dots, m_{k}) = \mu(m_{1}) \dots \mu(m_{k}),$$

where $\mu(e)$ on the right is the ordinary μ -function; for s > 1, however, no such reduction is in general possible.

From (4) it follows at once that

(6)
$$\mu^{s}(1, 1, \cdots, 1) = 1.$$

In the next place it is not difficult to show that $\mu^{s}(m_1, \dots, m_k)$ is *multiplicative* in the k arguments m_1, \dots, m_k . An arithmetic function $f(m_1, \dots, m_k)$ is multiplicative provided

(7)
$$f(m_1, \dots, m_k) = \prod_{p} f(p^{e_1}, \dots, p^{e_k}),$$

where p is a typical prime, and

$$m_i = \prod p^{e_i}, \qquad e_i = e_i(p).$$

Thus the calculation of $\mu^s(m_1, \dots, m_k)$ is reduced to the calculation of

(8)
$$\mu^{s}(p^{e_1}, \cdots, p^{e_k}),$$

where some of the e_i may be equal to 0. Assume now that some $e_i > 1$, say $e_1 > 1$. Then comparing (4) for

$$p^{e_1}, p^{e_2}, \cdots, p^{e_k}$$
 with $p^{e_1-1}, p^{e_2}, \cdots, p^{e_k}$

leads at once to

(9)
$$\mu^{s}(p^{e_1}, \cdots, p^{e_k}) = 0,$$

if any $e_i > 1$. We may therefore suppose in (8) that

$$e_i = 1$$
 or $0, (i = 1, \dots, k).$

If $e_i = 1$ for t values of i, and $e_i = 0$ for the remaining k - t values, we may use in place of (8) the simplified notation

(10)
$$\mu^{s}(p^{t}1^{k-t}).$$

Again, inspection of the defining equation (4) for the values

$$m_1 = \cdots = m_t = p, \qquad m_{t+1} = \cdots = m_k = 1,$$

shows that the function (10) is independent of k. We may therefore shorten (10) to $\mu^s(p^t)$ or even $\mu^s(t)$ when there is no danger of confusion.

To calculate $\mu^s(p^t)$ we again use (4). Assume first t < s. Thus the conditions M^s are surely satisfied. Making use of (6), we show by applying (4) for $t = 1, 2, \dots, t$, that

(11)
$$\mu^s(p^t) = 0$$
 for $t = 1, \dots, s-1$.

For $t \ge s$, the conditions M^s are not satisfied. For example, for t = s, (4) becomes

$$\mu^{s}(1) + \mu^{s}(p^{s}) = 0,$$

so that $\mu^s(p^s) = -1$. Generally for $t \ge s$, (4) implies

$$(12) \quad 1 + C_{t,s}\mu^{s}(p^{s}) + C_{t,s+1}\mu^{s}(p^{s+1}) + \cdots + C_{t,t}\mu^{s}(p^{t}) = 0.$$

For the moment, put $\mu^s(p^t) = y_t$; then (12) implies

(13)
$$\sum_{i=0}^{t} C_{t,i} y_i = \begin{cases} -1 & \text{for } t = 0, \dots, s-1, \\ 0 & \text{for } t \geq s. \end{cases}$$

To solve (13) for y_i , we note that

$$\sum_{t=0}^{w} (-1)^{w-t} C_{w,t} \sum_{i=0}^{t} C_{t,i} y_{i}$$

$$= \sum_{i=0}^{w} (-1)^{w-i} C_{w,i} y_{i} \sum_{t=i}^{w} (-1)^{w-t} C_{w-i,t-i} = y_{w}.$$

Therefore we have

$$y_w = \sum_{t=0}^{s-1} (-1)^{w-t} C_{w,t} = (-1)^{w-s-1} C_{w-1,s-1},$$

as may be proved by an easy induction on s. Recalling the definition of y_w , we see that

(14)
$$\mu^{s}(p^{s+t}) = (-1)^{t-1}C_{s+t-1,s-1}$$
 for $t \ge 0$.

It is now easy to evaluate $\mu^s(m_1, \dots, m_k)$ generally. We use (11), (14), and the multiplicative property. Then in the first

place, by (9), μ^s vanishes if any s is divisible by the square of a prime. Assume therefore that each m_i is the product of distinct primes p_i . Put

$$(15) m_1 m_2 \cdot \cdot \cdot m_k = p_1^{t_1} p_2^{t_2} \cdot \cdot \cdot p_w^{t_w}.$$

Then if any $t_i < s$, it follows from (11) that $\mu^s = 0$. If, however, in (15) each $t_i \ge s$, then $\mu^s \ne 0$, and is determined by the following formula:

(16)
$$\mu^{s}(m_{1}, \cdots, m_{k}) = \prod_{i=1}^{w} (-1)^{t_{i}-s-1}C_{t_{i}-1,s-1},$$

which holds generally for all m provided $\mu(m_1) \neq 0, \dots, \mu(m_k) \neq 0$. Formulas (15) and (16), together with $\mu^s(m_1, \dots, m_k) = 0$ for $\mu(m_1)\mu(m_2) \dots \mu(m_k) = 0$, determine μ^s in all cases.

3. An Application. By means of the general μ^s , we may transform the series

(17)
$$\sum_{M^s} \beta(m_1, \cdots, m_k),$$

summed over all positive m_i satisfying the condition M^s of (4). Now by (4), the series in (17) equals

(18)
$$\sum_{(m)=1}^{\infty} \beta(m_1, \dots, m_k) \sum_{e \mid m} \mu^s(e_1, \dots, e_k)$$

$$= \sum_{(m)=1}^{\infty} \sum_{(e)=1}^{\infty} \mu^s(e_1, \dots, e_k) \beta(e_1 m_1, \dots, e_k m_k),$$

$$= \sum_{(m)=1}^{\infty} \gamma(m_1, \dots, m_k),$$

where

(19)
$$\gamma(m_1, \dots, m_k) = \sum_{(e)=1}^{\infty} \mu^s(e_1, \dots, e_k) \beta(e_1 m_1, \dots, e_k m_k).$$

Formulas (18) and (19) effect the transformation.

The example mentioned in the Introduction is the special case s = 2, k = 3.

4. The ϕ -Functions. For arbitrary positive k, s we define the function $\phi^s(m_1, \dots, m_k)$ as the number of sets of integers

$$\{e_1, \cdots, e_k\}, \qquad e_i \pmod{m_i},$$

for which W^s holds; W^s is an abbreviation for the $C_{k,s}$ simultaneous conditions

$$(e_{i_1}, \dots, e_{i_s}, m_{i_1}, \dots, m_{i_s}) = 1,$$

 $(i_1, \dots, i_s = 1, \dots, k; i_a \neq i_b).$

Clearly ϕ^s is symmetric in the k arguments m_1, \dots, m_k . For s=1, W^s reduces to $(e_i, m_i)=1$, so that

$$\phi^{1}(m_{1}, \cdots, m_{k}) = \phi(m_{1}) \cdots \phi(m_{k}),$$

where $\phi(m)$ on the right is the ordinary ϕ -function. In the other extreme case, s = k, assume $m_1 = \cdots = m_k$; then clearly

$$\phi^k(m,\cdots,m) = \phi_k(m),$$

where $\phi_k(m)$ is Jordan's function. From the definition, it is evident that

$$\phi^s(1, 1, \cdots, 1) = 1.$$

Secondly it is not difficult to show that ϕ^s satisfies (7); in other words, ϕ^s is a multiplicative function of m_1, \dots, m_k . We proceed to calculate

(20)
$$\phi^s(p^{e_i}, \cdots, p^{e_k}).$$

If some $e_i > 1$, (20) may be reduced further. Thus, if say $e_1 > 1$, it follows from the definition that

(21)
$$\phi^{s}(p^{e_1}, p^{e_2}, \dots, p^{e_k}) = p\phi^{s}(p^{e_1-1}, p^{e_2}, \dots, p^{e_k}).$$

It is therefore necessary to calculate the function only in the case $e_i = 1$ or 0. Exactly as in §2, if $e_i = 1$ for t values and = 0 for the remaining k - t values, we replace (20) by the simpler notation

$$\phi^s(p^t1^{k-t}) = \phi^s(p^t),$$

for here again the function in question is easily seen to be independent of k.

The determination of $\phi^s(p^t)$ involves no difficulty. It follows from the definition that $\phi^s(p^t) = p^t$ for t < s. For $t \ge s$, we may show that

(22)
$$\phi^{s}(p^{t}) = (p-1)^{t-s+1} \sum_{i=0}^{s-1} C_{t-s+i,i} p^{s-1-i}.$$

Indeed, by the definition,

$$p^{t} - \phi^{s}(p^{t}) = C_{t,t-s}(p-1)^{t-s} + C_{t,t-s-1}(p-1)^{t-s-1} + \cdots,$$

so that

(23)
$$\phi^{s}(p^{t}) = \sum_{i=0}^{s-1} C_{t,i}(p-1)^{t-i},$$

which may be identified with (22).

Again, expanding the right member of (23), we have

by (14). Therefore, by (21) and (9),

$$\phi^s(p^{e_1}, \cdots, p^{e_k}) = p^{e_1+\cdots+e_k} \sum_{f_1 \leq e_i} \frac{\mu^s(p^{f_1}, \cdots, p^{f_k})}{p^{f_1+\cdots+f_k}}$$

Finally, since both ϕ^s and μ^s are multiplicative,

$$\phi^s(m_1, \cdots, m_k) = m_1 \cdots m_k \sum_{d_i \mid m_i} \frac{\mu^s(d_1, \cdots, d_k)}{d_1 \cdots d_k},$$

and thus ϕ^s is expressed in terms of μ^s .

Institute for Advanced Study and Duke University