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A POLAR REPRESENTATION OF 
SINGULAR MATRICES 

BY JOHN WILLIAMSON 

Let A = (aty), (i = l, 2, • • • , ra; j = l , 2, • • • , » ) , be a matrix 
of m rows and n columns, whose elements a,-,- are complex num­
bers. I t has been shown f that , if m—n and A is non-singular, 
A=PiU= UP2, where U is a unitary matrix, while P\ and P 2 

are positive definite hermitian matrices. Moreover in such a 
polar representation of A, as it has been called, the matrices 
Pi , P2, and U are uniquely determined. We shall show that, if 
m = n and the rank of A is r <n> A = P i U == UP2, where P i and P 2 

are uniquely determined positive hermitian matrices of rank r 
and U is unitary but no longer unique. Any such representation 
of course is impossible if ni^n, as by definition both hermitian 
and unitary matrices are square, but it will be shown that some­
what analogous results exist in this case as well. 

As is customary we shall denote the conjugate transposed of 
A by -4* = (at*), where a* *=&,-{, the complex conjugate of a a. 
We shall use this notation, even if A is a vector, tha t is, a matrix 
of one row, so that in this case A A* will simply denote the norm 
of the vector A. For the sake of brevity we shall use the nota­
tions Ej for the unit matrix of order j and 0,-f ,• for the zero matrix 
of i rows and j columns. 

The matrix Ni=AA* is a square matrix of order m and the 
matrix N2s=A*A is a square matrix of order n, and since 
Ni = Nj* and N2 = Njf, both of these matrices are hermitian. 
Moreover, if the rank of A is r, the rank of Ni is r and so is the 
rank of N2. For, if K is the fth compound! of -4, at least one 
element ka of K is different from zero. The element in the ith. 
place of the leading diagonal of the product matrix KK* is 
^2tkitkit, which is a positive real number, since ki3- is not zero. 
Accordingly there is at least one r-rowed determinant of Ni 

t L. Autonne, Bulletin de la Société Mathématique, vol. 30 (1902), pp. 
121-134. A. Wintner and F. D. Murnaghan, On a polar representation of non-
singular matrices, Proceedings of the National Academy of Sciences, vol. 17 
(1931), pp. 676-678. 

t Turnbull and Aitken, The Theory of Canonical Matrices, p. 27. 
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which is not zero, so that the rank of Ni is at least r. Since the 
rank of Ni cannot exceed the rank r of A, the rank of iVi is 
exactly r. Similarly the rank of N2 is r. 

Since Ni is a hermitian matrix of rank r, there exists an m-
rowed unitary matrix X such thatf 

(i) 
/Du Or,m-r \ 

XNtX* = D = ( • ) , 

where Dn is a diagonal matrix of order r. If B =XA, B* = A*X*, 
so that 

(2) BB* = XAA*X* = XNiX* = D. 

If we denote the row vectors of B by bit (i = 1, 2, • • • , w), the 
column vectors of J3* are 6f, (i = 1, 2, • • • , m), and the element 
in the ith row and j t h column of BB* is &»•& f. I t therefore follows 
from (1) and (2) that bib? = 0, (i = r + l , • • - , ! » ) . Hence J5 is a 
matrix whose last m — r rows are zero so that 

(3) 5 

where J5i is a matrix of r rows and n columns. By a similar argu­
ment applied to N2 instead of to Ni, it can be shown that there 
exists an w-rowed unitary matrix Y such that 

(4) AY = (B2 Om,n-r), 

where B2 is a matrix of m rows and r columns. From (3) and (4) 
we deduce that 

(5) 

where Cu is an r-rowed square matrix, which is non-singular 
since the rank of A is r. Since XNiX* = XAYY*A*X* = CC*, 
it follows from (1) and (S) that 

(6) CuCn* = Dn. 

Denoting by ciy (i = 1, 2, • • • , r), the row vectors of Cu, and by 
di the element in the ML place of the diagonal matrix Du, we 

t Turnbull and Aitken, op. cit., p. 85. 
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deduce the equalities c^f = 0, (i^j), Cicf—di, (i, j = l, 
2, • • • , r). Hence di is a positive real number and the vector 
Ci/di112 is a normalized vector. Consequently the matrix 

dTm 

Vn = 

0 

lo 

0 

dïw .. 

0 

0 1 

0 

, - 1 / 2 

ar 

Cn = (Dnr
luCu 

is unitary and 

(7) Cn = QuVu, 

where Vu is a unitary matrix of order r and Qn = (Ai) 1 / 2 is a 
positive definite hermitian matrix of order r. Using the value of 
C given by (5), we have, from (7), 

(8) 

/QuVu 0r,„_r \ 

\Um—r,r ^Jm—r,n—r/ 

= /Qu 0r,„_r \ /Vn 0r,B_A 

\yJm—r,r ^m—r,n—r/ Wn—r.r •E'n—r / 

Now if tn^n, this last result may be written in the form 

(9) C = (Q 0w>n_m)F, 

where 
__ / C n 0r,w_r \ / ^ n 0r,n_A 

\ U w — r \)m—r,m—r/ Wn—r,r -^"n—r / 

Q being a positive hermitian matrix of order m and rank f, 
while F is a unitary matrix of order n. Moreover, if 

(10) c = «?! 0, »)Fl 

is another such representation of C, where Qi is a positive her­
mitian matrix of order m and rank r and Vi is a unitary ma­
trix of order n, we see that CC* = Q1Q1* = Qi2 =£>, so that 
Çi=J9 1 / 2 = Ç. Accordingly we may write (10) in the form 

/On 0r,n_r \/Wn V12\ 

\\)m—r,r Um—r,n—r/ \ ' 21 
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where Wn is an r-rowed squa re ma t r ix , V22 an (n — r)-rowed 
squa re ma t r i x , F12 an r by n — r a n d V21 an n — r b y n ma t r ix . 
Hence 

= /QiiWii 011^12 \ 

\^m—r,r ^m—r,n—r/ 

and comparison with (8) shows that Wu= Vu and Fi2 = 0r,n_r. 
Since F i F i * = £ n , it follows easily that V2i = 0n-r,r and that 
F22F22* = En-r. Hence the matrix Vi in (10) is of the form VW, 
where 

W ( Er 0r,n-r\ 

0n-r,r F 2 2 ) 

and F22 is an arbitrary unitary matrix of order n — r. We have 
therefore proved the following lemma. 

LEMMA. The matrix C can be represented in the form 
C—{Q Onr-m) Vi, where Q is a positive hermitian matrix of order 
m and rank r and Vi is a unitary matrix of order n. The matrix 
Q is unique while the matrix Vi is one of a set [Vi]= [VW], 
where V is a fixed unitary matrix and W ranges over a group G 
of unitary matrices of order n simply isomorphic with the group 
of all unitary matrices of order n — r. 

Since , 4 = X * C F * , by (9), 

A = X*(<2 0m,w_m)FF* = X*(Q 0m in-JXiX 1*7F*, 

where 

I <& Vm,n—m\ 
1 \n P )' 

Hence 

A = (X*QX 0m,n_w)Z!*FF* = (P 0m,n-m)U} 

where P = X*QX is a positive hermitian matrix of order m and 
rank r, while U = X? VY* is a unitary matrix of order n. If 
A = (Pi 0m,n-m)Ui is another such representation of A, it 
follows easily from the previous lemma that XPiX* = Q, so 
that P i = P , and tha t 17i= UZ, where Z = FTFF*. Accordingly 
we have proved the following theorem. 
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THEOREM. If A is a matrix of m rows and n columns of rank 
r and m^ny A can be represented in the form 

(H) A = (P1 0m,n-m)UU 

where Px is a positive hermitian matrix of order m and rank r and 
Ui is a unitary matrix of order n. The matrix P i is unique while 
the matrix U\ is one of a set [Ui] = [ t /Zi] , where U is a fixed uni­
tary matrix and Z\ one of a group G\ of matrices, simply isomor­
phic with the group of all unitary matrices of order n — r. 

COROLLARY. Under the above hypotheses the totality of unitary 
matrices Z\ for which AZi=A forms a group simply isomorphic 
with the group of all unitary matrices of order n — r. This group is 
the group Gi. 

For if AZi=A, (Pi Om>n_m)f/Z1 = (Pi Om,n-m)U, and Z1 

must lie in G\. Similarly if Z\ lies in Gi, AZ\ — A. 
If m ^n, A* is a matrix in which the number of its rows is at 

most equal to the number of its columns. Accordingly, under 
this hypothesis our theorem is true if A is replaced by A *. Hence, 
if m ^ n, A can be represented in the form 

(12) A-vJP% ) , 

where P 2 is a uniquely determined positive hermitian matrix of 
order n and rank r and U2 is one of a set [U2] = \Z<Jj\ where Zi 
ranges over a group G2 simply isomorphic with the group of all 
unitary matrices of order m — r. 

When m=n, tha t is, when the matrix A is square, some 
further results follow. In this case equations (11) and (12) be­
come 

(13) A = PiUl9 

and 

(14) A = U2P2, 

respectively, where P% and P2 are positive hermitian matrices 
of rank r and Z7i and U2 are unitary matrices. The two groups 
G\ and G2 are simply isomorphic, the two sets [Ui] and [U2] 
coincide; if Ui belongs to the set [Ui], Pi = £7i*PiZ7i. The first 
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statement is obviously true; if U\ lies in [Ui], A = U\U?P\Ui 
and, since UfPiUi is a positive hermitian matrix of rank r, 
U?PiUi = P2 and Ui lies in [U2]* Similarly any member V2 of 
[U2] lies in [Ui]. Further the matrix P2 is invariant under uni­
tary transformation by any matrix of the group Gi, and Pi under 
transformation by any matrix of the group G2. For if Z\ lies 
in Gi, AZi—A so that A = Z72ZiZi*P2Zi, and accordingly, 
ZfPzZ^P*. 

THE JOHNS HOPKINS UNIVERSITY 

ON A THEOREM OF FÉRAUD 

BY D. C. LEWIS, JR.* 

The Birkhoff-Pfaffian equations of dynamics are written in 
variational form as follows : 

8J"[!x-(?£)+e>'-0' 
where Q and the X's are functions of Xi, • • • , x^m and, in general, 
depend also periodically upon /, and where the skew-symmetric 
determinant \ai3'\, {aij — dXi/dXj — dXj/dXi), does not vanish 
in the regions considered. We restrict attention to the neighbor­
hood of a generalized equilibrium point, that is, a point where 
all the dQ/dXi—dXi/dt vanish identically in t. We take this 
point at the origin, x t = 0 , (i=*l, 2, • • • , 2m). 

The problem of reducing the Pfaffian system to a Hamiltonian 
system can be reduced to that of finding a non-singular trans­
formation, Xi=*x%(yi, • • • , y2m), leaving the origin invariant 
(and depending in general periodically upon /) which reduces 
the linear differential formal™! X{dx{ to the form X]£-i yndyu-i 
+dw, where dw is an exact differential in yit • • • , y2m, the coef­
ficients of which are independent of t. This same problem also 
will play an important role in a future paper of mine on "con­
servative" transformations in 2ra-dimensional spaces. 

The problem has been considered by Feraud,f who obtained a 

* National Research Fellow. 
f Extension au cas d'un nombre quelconque de degrés de liberté d'une propriété 

relative aux systèmes Pfaffiens, Comptes Rendus, vol. 190 (1930), pp. 358-360. 


