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A POLAR REPRESENTATION OF
SINGULAR MATRICES

BY JOHN WILLIAMSON

Let A =(a;;), 4=1,2,---,m;j=1,2,-.,n), be a matrix
of m rows and # columns, whose elements a;; are complex num-
bers. It has been shownt that, if m =# and 4 is non-singular,
A =P,U=UP,, where U is a unitary matrix, while P; and P,
are positive definite hermitian matrices. Moreover in such a
polar representation of 4, as it has been called, the matrices
Py, Py, and U are uniquely determined. We shall show that, if
m =n and the rank of 4 is?<#n, A = P,U = UP,, where P; and P,
are uniquely determined positive hermitian matrices of rank »
and U is unitary but no longer unique. Any such representation
of course is impossible if m#, as by definition both hermitian
and unitary matrices are square, but it will be shown that some-
what analogous results exist in this case as well.

As is customary we shall denote the conjugate transposed of
A by A*=(a}), where a%=a;;, the complex conjugate of a;;.
We shall use this notation, even if 4 is a vector, that is, a matrix
of one row, so that in this case 4 4* will simply denote the norm
of the vector 4. For the sake of brevity we shall use the nota-
tions E; for the unit matrix of order jand 0; ; for the zero matrix
of ¢ rows and j columns.

The matrix Ny=AA* is a square matrix of order m and the
matrix N;=A*A4 is a square matrix of order 7z, and since
N;=Ni* and Ny=Ng, both of these matrices are hermitian.
Moreover, if the rank of A is 7, the rank of N; is 7 and so is the
rank of N,. For, if K is the rth compoundi of 4, at least one
element %;; of K is different from zero. The element in the 7th
place of the leading diagonal of the product matrix KK* is
> ikiks, which is a positive real number, since k;; is not zero.
Accordingly there is at least one 7-rowed determinant of N;

t L. Autonne, Bulletin de la Société Mathématique, vol. 30 (1902), pp.
121-134. A. Wintner and F. D. Murnaghan, On a polar representation of non-
singular matrices, Proceedings of the National Academy of Sciences, vol. 17
(1931), pp. 676-678.

} Turnbull and Aitken, The Theory of Canonical Matrices, p. 27.
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which is not zero, so that the rank of N, is at least 7. Since the
rank of N; cannot exceed the rank 7 of 4, the rank of N; is
exactly 7. Similarly the rank of N, is 7.

Since N; is a hermitian matrix of rank 7, there exists an m-
rowed unitary matrix X such thatf

D Or.m—r
(1) XN, X*=D = ( . )

Om—r,r Om—r,m—

where Dy is a diagonal matrix of order 7. If B=XA4, B*=A4*X*,
so that

(2) BB* = XAA*X* = XN, X* = D.

If we denote the row vectors of B by b;, (i=1, 2, - - -, m), the
column vectors of B* are b¥, (=1, 2, - - -, m), and the element
in the 7th row and jth column of BB* is ;b }. It therefore follows
from (1) and (2) that 5;6*=0, (i=7-+1, .-, m). Hence Bis a
matrix whose last m —r rows are zero so that

: ()
( " O/’

where B is a matrix of # rows and % columns. By a similar argu-
ment applied to N, instead of to Vi, it can be shown that there
exists an n-rowed unitary matrix Y such that

4) AY = (B; Oum,n—r) 5

where B; is a matrix of m rows and ¢ columns. From (3) and (4)
we deduce that

C Or,n—r
(35) XAI/=C=( H >
Om-r,r Om—r,n—r

where Cy is an r-rowed square matrix, which is non-singular
since the rank of 4 is 7. Since X N1 X*=XAYY*4*X*=CC*,
it follows from (1) and (5) that

(6) CuCu* = Du;.

Denoting by ¢;, (1=1, 2, - - -, 7), the row vectors of Cy;, and by
d; the element in the sth place of the diagonal matrix Dy, we

t Turnbull and Aitken, op. cit., p. 85.
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deduce the equalities cic*=0, (@#]), ciciF=d; (2, j=1,

2,---,r). Henced; is a positive real number and the vector
¢;/d;*? is a normalized vector. Consequently the matrix
a0 -0
0 d;—l/2 U
Vi=| - . cee Cu = (Du) ™My
0 0 R N

is unitary and
(7) Cuy = Q11V11,

where Vi1 is a unitary matrix of order » and Qu=(Dy)*? is a
positive definite hermitian matrix of order 7. Using the value of
C given by (5), we have, from (7),

C = (QIIVII Or,n——r )
Om—r R Om—r yn—r
_ (Qll Or,n—r ) (Vll 0r.n—r>
OM'—TyT Om—r.n-r 071‘-1‘.7‘ En—r '
Now if m <n, this last result may be written in the form
9 C=(Q Omn—m)V,
where
Qll Or,m—-r Vu Or,n—r
Q = ( ’ V= )
Om—r Om—r ym—r On—r W En—-r
Q being a positive hermitian matrix of order m and rank 7,
while V is a unitary matrix of order n. Moreover, if

(10) C = (Ql Om,n—m)Vl

is another such representation of C, where Q; is a positive her-
mitian matrix of order m and rank r and V; is a unitary ma-
trix of order #, we see that CC*=Q,Q*=(Q2 =D, so that
Q1=D'2=Q. Accordingly we may write (10) in the form

C = <Q11 0r,n~r >(W11 V12>
Om—r,r Om—r,n—r/ \Va1 Vi)’

(8)
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where Wy is an r-rowed square matrix, Vg an (z—7)-rowed
square matrix, Vi, an # by n—r and Vy an #n—r by # matrix.

Hence
C = (QuWu QuVis >’

Om_r,r Om—r.n—r

and comparison with (8) shows that Wy =7Vy; and V=0, ;.
Since Vi Vi*=E,, it follows easily that V4 =0,_,,. and that
Voo Vae*=E,_,. Hence the matrix V; in (10) is of the form VW,

where
Er Or,n—r
w=( )
On—r.r V22
and Ve is an arbitrary unitary matrix of order »—r. We have
therefore proved the following lemma.

LeEMMA. The maitrix C can be represented in the form
C=(Q 04,—m) V1, where Q is a positive hermitian matrix of order
m and rank r and Vi is a unitary matrix of order n. The matrix
Q is unique while the matrix Vi is one of a set [Vi]|=[VW],
where V is a fixed unitary matrix and W ranges over a group G
of unitary matrices of order n simply isomorphic with the group
of all unitary mairices of order n—r.

Since A =X*CY*, by (9),

4 = X*Q Omn—m) VY* = X*(Q O0mynem) X1 X VY *,
where
<X Om,n—m)
X1 = .
On-—m.m En—m
Hence

4 = (X*QX Om,n—m) X *VYV* = (P Omyn—m) U,

where P=X*QX is a positive hermitian matrix of order m and
rank 7, while U=X#VY* is a unitary matrix of order ». If
A=(Py 0, ,,—m)Us is another such representation of 4, it
follows easily from the previous lemma that XP X*=Q, so
that P;=P, and that U,=UZ, where Z=YWY*. Accordingly
we have proved the following theorem.



122 JOHN WILLIAMSON [February,

THEOREM. If A is a matrix of m rows and n columns of rank
rand m=n, A can be represented in the form

(11) A = (Pl Om,n—m)Ul,

where Py is a positive hermitian matrix of order m and rank r and
U, is a unitary matrix of order n. The matrix Py is unique while
the matrix U is one of a set [U] = [UZ,], where U is a fixed uni-
tary matrix and Z, one of a group G, of matrices, simply isomor-
phic with the group of all unitary matrices of order n—r.

CoROLLARY. Under the above hypotheses the totality of unitary
matrices Zy for which AZ,=A forms a group simply isomorphic
with the group of all unitary matrices of order n—r. This group is
the group Gi.

For if AZi=A, (P Omm-m)UZi=(Py OmnmU, and Z*
must lie in Gy. Similarly if Z; liesin Gy, AZ,=A4.

If m=n, A* is a matrix in which the number of its rows is at
most equal to the number of its columns. Accordingly, under
this hypothesis our theorem is true if 4 is replaced by 4*. Hence,
if m =%, A can be represented in the form

P,
(12) 4 =1U, (0 >,

where P, is a uniquely determined positive hermitian matrix of
order 7 and rank r and U, is one of a set [U,] = [Z,U], where Z,
ranges over a group G, simply isomorphic with the group of all
unitary matrices of order m —r.

When m =mn, that is, when the matrix 4 is square, some
further results follow. In this case equations (11) and (12) be-
come

(13) A = PIUI}
and
(14) A = U,P,,

respectively, where P; and P, are positive hermitian matrices
of rank » and U, and U: are unitary matrices. The two groups
Gy and G, are simply isomorphic; the two sets (U] and [U,]
coincide; if Uy belongs to the set [Ui], Py= U#P Uy The first
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statement is obviously true; if U lies in [U1], 4 = U, U#P,U,
and, since U{#*P,U, is a positive hermitian matrix of rank 7,
U#P,Uy=P; and U, lies in [U.]. Similarly any member U, of
[Us] lies in [U.]. Further the matrix P, is invariant under uni-
tary transformation by any matrix of the group G, and Py under
transformation by any matrix of the group G, For if Z; lies
in G, AZi=A4 so that A =U;ZiZ*PyZ,, and accordingly,
Zl*P 221 =P 2.
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The Birkhoff-Pfaffian equations of dynamics are written in
variational form as follows:

STE (&) sJumn.

where Q and the X’s are functions of %1, - - -, X2 and, in general,
depend also periodically upon ¢, and where the skew-symmetric
determinant Iai jl , (@;;=0X;/0x;—0X ;/dx;), does not vanish
in the regions considered. We restrict attention to the neighbor-
hood of a generalized equilibrium point, that is, a point where
all the 8Q/dx;—0X;/d¢ vanish identically in ¢. We take this
point at the origin, x;=0, (1=1,2, - - -, 2m).

The problem of reducing the Pfaffian system to a Hamiltonian
system can be reduced to that of finding a non-singular trans-
formation, x;=x:;(y1, - - -, ¥am), leaving the origin invariant
(and depending in general periodically upon #) which reduces
the linear differential form »_27, X ;dx; to the form D 11 y2:dysi_1
-+dw, where dw is an exact differential in yy, - -+, Y2m, the coef-
ficients of which are independent of ¢. This same problem also
will play an important role in a future paper of mine on “con-
servative” transformations in 2m-dimensional spaces.

The problem has been considered by Féraud,t who obtained a

* National Research Fellow.
t Extension au cas &'un nombre quelconque de degrés de liberté d’une propriété
relative aux systémes Pfaffiens, Comptes Rendus, vol. 190 (1930), pp. 358-360.



