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set of positive integers §; such that Qi(y, 1%, - - -, 9,%) would
be resolvable into more than K,, factors, which is not the case.
Each of the functions (7) is a factor of f(x).

When we multiply together the simple functions coming from
the irreducible binomial factors of Q which do not involve yq
and the irreducible functions coming from the remaining irre-
ducible factors of Q, we have a resolution of f(x) into factors
belonging to the class C. It is easily seen that this factorization
is unique. Thus we have the following theorem.

THEOREM. A function f(x) belonging to the class C can be ex-
pressed in one and only one way as a product

J@) = In(x) - -+ In(%)S1(x) - + - Sa(),

where each factor belongs to C, the I's are irreducible functions,
and the S's are simple functions, bo+_b; exp (Bix), such that the
ratio of any two B8’s in different functions is irrational.
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THE NUMBER OF TRISECANTS OF A SPACE CURVE
OF ORDER m WHICH MEET AN -FOLD SECANT*

BY L. A. DYE

The number of trisecants of a space curve C.n, of order m,
which meet a general line was determined by Zeuthen,} but if
the line happens to be an ¢-fold secant, ¢>2, it lies on the ruled
surface of trisecants and the formula fails. In algebraic geom-
etry some extension of Zeuthen’s work to cover this neglected
case is often necessary, so by means of a correspondence we
show that the number of trisecants of a C,, which meet an ¢-fold
secant / is

(m— 2)[k — m(m — 1)/6] — i(h — m + 2) +i(i —1) (i— 2)/6,

where & is the number of apparent double points of C,..
In the plane determined by ! and one of the A’ =k —i{s—1)/2

* Presented to the Society, October 27, 1934,
t H. G. Zeuthen, Sur les singularités des courbes gauches, Annali di Mate-
matica, (2), vol. 3 (1869), pp. 175-217,
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bisecants of C,, through any point A on /, let A, B be the points
of Cn, on the bisecant and let C;, [j=1, 2, -, (m—i—2)],
denote the points of C, not on [ or the bisecant. The lines 4 C;
and B(C; determine 2(m—:—2) points u on /, and when all
of the 4’ bisecants through the point A are considered there are
2(m—1—2)k’ points u determined by each point A. Since the
relationship between the points A and u is symmetrical, there
exists a [2(m—i—2)', 2(m—i—2)h'] correspondence. The
4(m—1—2)h' coincidences of this correspondence fall into three
classes.

1. In the plane determined by / and a trisecant of C,, meeting
! let A, B, C be the points of C,, on the trisecant. If the line
is thought of as A B, then 4 C and BC each account for a coinci-
dence. Similarly the line may be taken as 4 C or BC, so that 6
coincidences arise from each of the x trisecants of C, meeting /.

2. Since there are r =m(m —1) — 2k tangents to C,, meeting an
arbitrary line, there are 7' =7—27 tangents meeting /. In the
plane of one of these tangents and /, let A=B be the point of
tangency and C; any one of the m —¢—2 residual intersections
of Cn not on I. For each line 4 C; there arises one coincidence
due to BCj, hence there are (m —7—2)7’ coincidences due to the
tangent lines meeting /.

3. In the plane determined by and a tangent to C, at one
of the 7 intersections with J, call the point of tangency A =B.
Join 4 to one of the m —i—1 residual intersections C; of Cn,
then the lines joining B to the m —¢—2 remaining points Cj
determine m — ¢ — 2 coincidences. Since there are m —¢—1 choices
for C;, and ¢ points on [, there are ¢(m—4—1) (m—<—2) coin-
cidences accounted for in this case.

We now solve the equation

dm — i — )W =6x+ (m— i — 2)r' +ilm — i —1)(m — i —2),
and obtain
x=(m—2)[h—m(m—1)/6]—i(h—m+2)+i(i—1)(i—2)/6.
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