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set of positive integers 8i such that Qi(yo, yih, • • • , y***) would 
be resolvable into more than Km factors, which is not the case. 
Each of the functions (7) is a factor oîf(x). 

When we multiply together the simple functions coming from 
the irreducible binomial factors of Q which do not involve yo 
and the irreducible functions coming from the remaining irre­
ducible factors of Ç, we have a resolution of f(x) into factors 
belonging to the class C. I t is easily seen that this factorization 
is unique. Thus we have the following theorem. 

THEOREM. A function f(x) belonging to the class C can be ex-
pressed in one and only one way as a product 

ƒ ( » = Ii(x) • • • Im{x)Si(x) • • • Sn(x), 

where each factor belongs to C, the F s are irreducible functions, 
and the S's are simple functions, bo+^bj exp (fi%x), such that the 
ratio of any two (3's in different f unctions is irrational. 
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T H E N U M B E R OF TRISECANTS OF A SPACE CURVE 
OF O R D E R m WHICH M E E T AN i-FOLD SECANT* 

BY L. A. DYE 

The number of trisecants of a space curve Cm, of order w, 
which meet a general line was determined by Zeuthen,f but if 
the line happens to be an i-iold secant, i>2, it lies on the ruled 
surface of trisecants and the formula fails. In algebraic geom­
etry some extension of Zeuthen's work to cover this neglected 
case is often necessary, so by means of a correspondence we 
show that the number of trisecants of a Cm which meet an i-fold 
vsecant / is 

(m - 2)[> - m(m - l ) /6 ] - i(h - m + 2) + i(i - 1 ) ( i - 2)/6, 

where h is the number of apparent double points of Cm. 
In the plane determined by / and one of the h' =h — i{i—1)/2 

* Presented to the Society, October 27, 1934. 
t H. G. Zeuthen, Sur les singularités des courbes gauches, Annali di Mate-

matica, (2), vol. 3 (1869), pp. 175-217. 
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bisecants of Cm through any point X on /, let A, B be the points 
of Cm on the bisecant and let Cj, [j = l, 2, • • • , (m — i — 2)], 
denote the points of Cm not on / or the bisecant. The lines A Cj 
and BCj determine 2(m—i — 2) points ju on I, and when all 
of the hf bisecants through the point X are considered there are 
2(m — i — 2)hf points fx determined by each point X. Since the 
relationship between the points X and JJL is symmetrical, there 
exists a [2(m — i — 2)hf, 2(m—i — 2)h'] correspondence. The 
4:(m — i — 2)hf coincidences of this correspondence fall into three 
classes. 

1. In the plane determined by / and a trisecant of Cm meeting 
/ let A, B, C be the points of Cm on the trisecant. If the line 
is thought of as AB, then A C and BC each account for a coinci­
dence. Similarly the line may be taken as A C or B C, so that 6 
coincidences arise from each of the x trisecants of Cm meeting /. 

2. Since there are r = m(m — 1) — 2h tangents to Cm meeting an 
arbitrary line, there are r' = r — 2i tangents meeting /. In the 
plane of one of these tangents and /, let A^B be the point of 
tangency and Cj any one of the rn—i — 2 residual intersections 
of Cm not on /. For each line A Cj there arises one coincidence 
due to BCj, hence there are {m — i — 2)rf coincidences due to the 
tangent lines meeting /. 

3. In the plane determined by Z and a tangent to Cm a t one 
of the i intersections with /, call the point of tangency A =B. 
Join A to one of the m — i—1 residual intersections Cj of Cm, 
then the lines joining B to the m — i — 2 remaining points Ck 
determine m—i — 2 coincidences. Since there are m—i—1 choices 
for Cj, and i points on /, there are i{m — i— 1) (m — i — 2) coin­
cidences accounted for in this case. 

We now solve the equation 

4(m — i — 2)hf = 6x + (m — i — 2)rf + *(w — i — l)(m — i —2), 

and obtain 

x=(m-2)[h-m(m-l)/6]-i(h-m+2) + i(i-l)(i-2)/6. 
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