
ON T H E D E V E L O P M E N T OF FUNCTIONS IN SERIES 
OF ORTHOGONAL POLYNOMIALS* 

BY J. A. SHOHAT 

Introduction. A function p(x), called the weight or character­
istic function, non-negative on a given interval (a, &), finite or 
infinite, and such that all moments^ 

(1) an = I p(x)xndx, (ft = 0, 1, 2, • « • ) , 

exist, with a 0 > 0 , gives rise, as is known [ l ] , t to a system of 
orthogonal and normal Tchebycheff polynomials (OP) 

(2) <j>n(x\ p) s 4>n(x) = anx
n + • • • , O = 0, 1, • • • ; an > 0), 

uniquely determined by the following relations: 

J fO, m y£ ft, 
p(x)<j>m(x)<j>n(x)dx = <5mn = < 

VI, m = ft, 

(w, ft = 0, 1, • • • ). If G8(x) —^8i=ogiX{ denotes an arbitrary poly­
nomial of degree ^ s (subject in some cases to certain explicitly 
stated conditions), (2) yields 

(4) I p(x)<j)n(x)Gn-i(x)dx = 0, (ft = 1, 2, • • • ) . 

The most important and best known OP are the so-called "class­
ical" polynomials of 

(J) Jacobi: (a, b) finite, say, (— 1, 1); 

p(x) = (1 + x)«-\l - xY~\ (a, /3 > 0). 

(5) (L) Laguerre: (a, b) = (0, oo); ^>(#) = xa-le'x, (a > 0) . 

(H) Hermite: (a, 6) = ( - oo, oo); p(x) = e~x\ 

We note the following important cases of (J) : 

* Address delivered by invitation of the Program Committee, at the 
Summer Meeting of the Society, September 6, 1934. 

t Here and hereafter ƒ means /fl\ 
% Numbers in brackets refer to the Bibliography at the end. 
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Legendre polynomials (a=/3 = 0), trigonometric polynomials 
(<*=/3 = l / 2 ) . 

The OP have many interesting and increasingly important 
applications in pure analysis, as well as in mathematical physics, 
mathematical statistics, and mechanics. We may mention 
approximate evaluation of definite integrals (mechanical quad­
ratures), interpolation, curve fitting, certain oscillation prob­
lems in engineering mechanics, and investigation of certain 
classes of polynomials (for example, monotonie in (a, &)). The 
most important of such applications, which served to introduce 
the general OP in analysis, is their use in expanding arbitrary 
functions in series. In fact, making use of (3), we get the formal 
expansion 

oo r* 

(6) f{0c)^Y^fn4>n{0c), fn= I p(x)f(x)<t>n{x)dx, 

of any function f(x), for which the integrals expressing the fn 

exist. We see that (6) is built up in the same manner as the 
trigonometric expansion, the ordinary Fourier series. The latter 
employs the simplest orthogonal sequence {sin nx, cos nx}, 
(n = 0, ! , • • • ) , while (6) employs orthogonal polynomials, 
which may be considered the next simplest orthogonal functions. 

A fundamental question naturally arising in connection 
with the expansion (6) is that of its convergence. Given the 
sequence {<j>n(x)}, for what classes of f unctions f (x) does (6) con­
verge in (a, b) or in a part thereof} The present paper is devoted 
to a discussion of various methods used in dealing with the 
convergence properties of the expansion (6). I t is confined to 
a single real variable and to ordinary convergence. The proofs 
are in general but briefly sketched, if not omitted, our aim being 
to bring out general ideas. The topics treated can be classified 
as follows. 

I. General properties of the expansion (6). 
I I . General methods for investigating the convergence of (6). 
(a) Case of continuous functions ; use of Weierstrass' theorem. 
(b) Application of the theory of integral equations. 
(c) Application of the general theory of orthogonal functions ; 

Rademacher-Menchoff theorem, Lebesgue constants. 
(d) The use of the asymptotic expression of <j)n(x), (n—>oo) 

(Dirichlet integral) ; equiconvergence. 
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I I I . Special methods for investigating the convergence of (6). 
(a) From summability to convergence. 
(b) Use of the closure equation. 
(c) Use of the differential equation (for the classical OP). 
(d) Comparison method. 
These methods naturally vary in generality and power. This 

is best illustrated by applying the various methods to expan­
sions in series of Legendre polynomials, the oldest and the best 
known OP. A comparison of the criteria of convergence thus 
obtained brings out the following fact: the more general the 
method, the less does it utilize the special character of the func­
tions involved; hence, a gain in generality is accompanied, as a 
rule, by a loss in the preciseness of the results obtained. 

The supreme goal, when dealing with (6), is to show that, 
regarding convergence, it behaves in a certain subinterval of 
(a, b) like the ordinary Fourier series expansion of f(x) or of 
some function simply related to it. This constitutes what We 
call the equiconvergence theorem, of greatest importance in our 
theory. Indeed, we well know the wide range of validity of the 
Fourier series expansion, which makes it such a powerful ana­
lytical instrument. The classes of OP for which this goal is at­
tainable are evidently the most interesting, and the method by 
which the goal has been attained is evidently the most powerful 
one. 

I. SOME GENERAL PROPERTIES OF THE EXPANSION (6). 

1. Various Representations of the Remainder in (6). We re­
write (6) in the form 

(7) ƒ(*) = Ê fMx) + Rn(x; f) = Sn(x; f) + Rn(x; f), 
i=_0 

whence, by use of (3) and (4), it follows that Rn(x; G„) = 0 , 

1 = I P(y) È 4>i(x)4>i(y)dy = I p(y)Kn(x, y)dy, 

(8) " J 

Sn(x;f)= J p(y)f(y)Kn(x}y)dy, 

and, by use of Darboux's formula [2], 
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n 

Kn(x, y) = 22 4>i(*)<l>i(y) 

__ an V<l>n+l(x)4>n(y) — 0 n ( « ) 0 n + l ( y ) ' 

Ö»H-I L « — y 
(9) 

•X\i(*, X) = -£»(&) = [4>^+i(x)<l>n(x) - 0n(«)*iH-l(^)] 

(io) sn(%; ƒ) = p(y)f(y) <*y, 
an+i J x — y 

(11) 2în(x) s 12,(0?; ƒ) = ƒ #(y) [ƒ(*) - /(y) ]*»(*, y)^y 

^n r . . . . . . r / Nl*M-l(^)*»(y) - *nW0n+l(y) _ 

an4.i J x — 'V 

(12) 

0 n + l ( ^ ) * n ( y ) — * n ( ^ ) 0 n + l ( y ) 

<M-i •/ " x — y 

#n(*; / ) = *"(*) - ƒ #(y)[F(*) -F(y)]2£ n(x, y)dy, 

F(x) s / ( » ) - G „ ( * ) , 

2. Bessel Inequality. Closure. The general assumption will 
be now made that f(x) is of the class L£, that is, p(x)f2(x) is 
L-integrable in (a, 6). (Similarly, f(x) being of the class Lp 

means p{x)f(x) is L-integrable.) A ready application of (3) 
yields 

f P(y) \f(y) - ÊfMy)Jdy = f p{y)P(y)dy -]£ƒ<», 
•J L »-o J «J »=o 

which leads to the Bessel inequality : 

ƒ P(y) \f(y) - Sn(y; f)]*dy = ƒ tfyW(y)^ 
(13) 

= f P(y)f(y)dy - Ê ƒ<• è o, (» - o, 1, • • • )• 

Hence we may write 
00 •» 

(14) X fn converges and is ^ I p{y)p(y)dy. 
w=0 ^ 
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If in (14) we have the right to use the equality sign, then we have 
the so-called Parseval formula (closure equation), one of the most 
important in the theory of orthogonal functions : 

(15) E / , 2 = f P(y)P(y)dy, 

where f{x) is of class Lp
2, and fn=fp(%)f{x)<t>n(oc)dx. This, in 

connection with (13), leads to the equation 

(16) f p{y)Ri (y)dy = £ ƒf = o(\), ( » - > » ) . 

In the theory of OP it is shown : (i) ParsevaV s formula always 
holds f or (a, b) finite] (ii) for (a, 6) infinite its validity is inti­
mately connected with the character, determined or indeter­
minate, of the moment-problem related to p(x), that is, the prob­
lem whether the system of infinitely many equations 

I xnd\p(x) = I p(x)xndx = an, (n = 0, 1, ) , 

where the unknown function yp(x) is monotonie non-decreasing 
in (a, b) with \[/(a) = 0 (and the left-hand integral is a Stieltjes 
integral), has or has not solutions distinct from the given one: 
\l/(x)=Jap(x)dx* In particular, ParsevaV s formula holds for the 
polynomials of Laguerre and Hermite. The validity of ParsevaV s 
formula is assumed throughout the subsequent discussion. 

3. Consequences Derived from ParsevaV s Formula. We know 
that 

(17) l im/ n = 0, 
n—»oo 

for any f(x) of the class L£. The set of relations 

(18) ƒ p{x)f(x)<t>n(x)dx = 0, (n = 0, 1, • • • ) , 

implies (p(x))1/2f(x) =0 almost everywhere in (a, b).f In 
other words, two functions having the same Fourier coefficients 

* The sharp distinction between the cases of (a, b) finite and infinite, as 
stated above, is clearly seen from the following example due to Stieltjes [3]: 

/ 0 V * 1 M sin (x1/4) *"dx=0, (w=0, 1, 2, • • • ) . 
t If (a, b) is finite, (18) is valid for any f(x) of the class Lp in (a, &). In fact, 
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in (6) are equivalent, tha t is, their difference multiplied by 
(p(x))1/2 vanishes almost everywhere in (a, 6).* 

The product 

(19) (p(x)Y»Sn(x;f) 

converges, for n—*<*> , on the average to (p(x))l/2f(x) on (a, b) [4]. 
I t follows that a subsequence {p{x))x,2Srik{x)f) can be extracted 
which converges to (p(x))ll2f(x) in the ordinary sense (nh~»°o) 
almost everywhere in (a, 6). Hence, if Sn(x\f) converges, for 
n—>°o , on a set E c (a, b) of positive measure (where we assume 
p(x)5*0), it necessarily converges to the value f(x) almost 
everywhere on £ . 

We have also 

(20) f p{x)f(x)F{x)dx = £ /MFW, 

where JF is of class Lp
2, and 

Fn = I p(x)F{x)<t>n{x)dx. 

This is readily obtained by applying (15) to f{x)±F{x). As­
sume further that 

exists, (c, d) c (a, b). 
c # ( « ) 

Take in (20), F(x) = l/p(x) in (c, d)} and F(x) = 0 elsewhere in 
(a, b); then Fn=Jc<i>n(x)dxi and we thus obtain the following 
important result : 

(22) I / (x)Jx = YJU I <t>n(x)dx, 
J c n=0 «̂  c 

which tells us that the expansion (6), whether convergent or not, 
can be integrated term by term in any interval (c, d) which is part 

reduce (a, b) to ( — 1, 1). Put x = cos 0 and denote p(cos 0)/(cos 0) by F(d). 
Then ƒ lp(x)f(x)<j>n(x)dx—0, (rc=0, 1, • • • ), is equivalent to J\lp{x)f{x)xndx 
=0 or to foTF(e) cos n0d0=O, (n=0, 1, • • • ). Define i?i(0) » F(0) in (0, w), and 
Fi($)=-F(-$) in (-7T, 0). Then / !^ i (0 ) Z ndde = 0 for all w^0; hence, by 
the theory of trigonometric series, Fi(d)—0almost everywhere in (—x, TT). 

* Stieljes [3]. 
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of (ay b), where (21) is satisfied* the convergence in (22) being 
uniform if d varies. 

We now turn again to the remainder Rn(x;f) in (6) and as­
sume, for definiteness, x to be a fixed point inside (a, b). Re­
write (11) as follows: 

#„(*;ƒ) = — ( I + + )P(y)[f(*)-f(y)] 
an+l \J a J x-€ J x+t/ 

• Kn{%, y)dy = ix + i2 + H 

(23) = \ ^(x) p(y) JU—J^IL ^y)dy 
an+i \ J a x — y 

ƒ ƒ(*) ~ f (y) ) 

P(y) <l>n+i(y)dy> + H + *s. 
a x — y ) 

(Here and hereafter e denotes a sufficiently small positive quan­
tity, properly chosen.) In i\ (similar considerations apply to 3̂) 
define 

ƒ(*) - Ay) 
^ ) — j n ( ^ x __ €) ? yp(y} — 0 in (# + e, 6) \ 

x — y 
Then 

/
ƒ(*) - f(y) Cb 

P(y) <t>n{y)dy = p{y)Hy)<t>n{y)dy, 
tve thus conclude, by (17), tha t 

»(y) ».(y)rfy-o. 
a x — y 

J(*)-fto) 
y 

and we thus conclude, by (17), tha t 

«->oo •/ a x — y 

Furthermore, if (a, b) is finite, then an/an+\ is bounded [ l ] : 
an/an+i = 0(l). If, in addition, 

(25) 4>n(x) = 0 (1 ) 

at the given point x, then 

^ /» »—e /Y#) /TV) 
(26) lim — - <t>n+1(x) p(y) J— J-^- 4>n(y)dy - 0 . 

»-*<*> an+\ •/ a x — y 
I t follows that the behavior of Rn(x; ƒ) depends here solely 

* For Legendre polynomials (22) holds for any f(x) of the class L [S], 
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upon its component f2. The important conclusion resulting from 
the above considerations can be stated as follows. For (a, b) 
finite, the convergence of the expansion (6) to fix) at a given point x 
where the sequence {</>n(x)} remains bounded for n—>oo depends 
solely upon the nature of f(x) in the immediate neighborhood of x 
[6]. 

In other words, if two functions fi(x) and f2(x) coincide in an 
arbitrarily small neighborhood (x— e, x-\-e) of the point x, then 

lim [Rn(x; / i) - Rn(x; ƒ,)] = 0, 
(27) , (n—><*>), 

lim LS»(*;/i) - Sn(x;f2)] = 0, 

for Rn(x; fi~-f2) is here reduced to the components i\ and iz in 
(23), written for fi(x)— f2(x). 

We now add the further condition that f(x) satisfies a Lip-
schitz condition in the neighborhood of the point x, that is, 

(28) I ƒ ( / ) - ƒ ( ƒ ' ) ! *X | y' -y"\, 
(x — e ^ y\ y" ^ a; + e; X = const., independent of ƒ , 3/')-

Define F(y) as follows: 

m , / ( * ) - / ( y ) . , , , , 
x — y 

= 0 elsewhere in (a, b), and for y = x. 

Under condition (28), F(y) is seen to be of the class Lp
2, and 

by the same reasoning as applied above to ii.s, we show that 
here lim i2 = 0, so that lim Rn(x; ƒ) =0 , (n—»oo). The same con­
clusion holds if 

(29) I ƒ(ƒ) - ƒ(ƒ') I ^ X I ƒ - y" f, with a > 1/2, 

where X, y1', y are as in (28) (Lipschitz condition of order a), 
provided p(x) is bounded in (x —e, #+€) . Thus we have found, 
as an immediate consequence of Parseval's formula, that the ex­
pansion (6) converges to fix) at any point x in the finite interval 
(af b) in the neighborhood of which fix) satisfies a Lipschitz condi­
tion of order 1 (or of order > 1/2, if p{x) is bounded in this neigh­
borhood), provided the sequence {<f>n(x)} is bounded at the point 
x under consideration. 

The latter condition is satisfied for various classes of OP, 
often uniformly in (a + e, b — e), as illustrated by Jacobi poly-
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nomials. (This is usually established by means of the asymptotic 
expression for </>n(x).) 

4. Some Extremal Properties of the Expansion (6). By means 
of (3) and (4) we readily derive the following relations : 

f P(y) \f(y) - E (fi + *<)*<(}0l dy 

P(y)r(.y)-£,ft + i,k?, 

where the hi denote arbitrary constants; whence, by (13), 

(30) ƒ p(y) [f(y) - Sn(y; ƒ) fdy g ƒ p(y) [f(y) - Gn(y) fdy, 

where the equality sign holds only for Gn(y) =Sn(y;f). This is an 
important extremal property which led Tchebycheff to the 
introduction of the general OP in analysis, considering (6) as 
furnishing interpolation in the sense of least squares. 

II . GENERAL METHODS FOR INVESTIGATING THE CONVERGENCE 

PROPERTIES OF THE EXPANSION (6). 

1. Case of Continuous Functions. The convergence of (6) 
evidently depends upon the order of magnitude (with respect 
to n) of the chosen polynomials </>n(x) and of the coefficient / n . 
While the former may be investigated once for all, by studying 
the properties of p(x), the latter essentially depends on the 
nature of f(x). We proceed to show that the study of the order of 
fn is readily achieved in the important case where f(x) is con­
tinuous in the finite interval (a, b). Here one naturally thinks first 
of Weierstrass' approximation theorem: any f unction continuous 
in a given finite interval can be therein approximated uniformly 
and indefinitely by means of polynomials of ever increasing 
degrees. Moreover, Tchebycheff has shown, that among all 
polynomials of degree ^n, there exists a unique polynomial 
n n ( x ; / ) of ubest approximation" ( =En(f)) tof(x) on (a, b), that is, 

(31) En(f) = max | ƒ(*) - Iln(x; ƒ) | g max | ƒ(*) - Gn{x) \, 

(a^x^b), where, by Weierstrass* theorem, 

(32) limEnif) = 0. 
n—•«> 

-
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Here, as in many other problems dealing with continuous func­
tions, Weierstrass' theorem proves a powerful and readily ap­
plicable tool. 

(i) We have, first, by (4), 

ƒ» = ƒ P(y)[ƒ0) - Gn^(x)]dx 

(S3) 

= j P(%)[f(%) - Hn-i(%;f)]<l>n(x)dx. 

Hence, applying Schwartz's inequality and making use of (31), 
we find that 

(34) | fnd>n(x) | g (ao)^En-i(f) | 0n(*) I. 

While this estimate, resulting from very simple considerations, 
is rather crude, it has the advantage of showing in many cases 
the convergence of (6) directly, without any further discussion. 
In fact, the order of magnitude of En(j), depending upon the 
continuity properties of f(x), is well known, thanks to the work 
of Lebesgue, de la Vallée-Poussin, S. Bernstein, and Dunham 
Jackson. Thus 

| f^{x')-f^(x")\ ^X| x'-x"\a
y (a^x',x"^b;0<aSl), 

implies En(f)=0(n-»-«), (p^O); 

(35) fip)(%) continuous in (a, b) implies En(f) = o(n~p); 

| f(x+8)— f(x) | • | log | ô | |ô^o-^O (Dini-Lipschitz condition) 

implies En(J) =ö ( l / l og n). 

If now the order of <t>n(x) is known, say 

(36) | 4>n(x) | = 0(n') 

for a certain x, then, for the same x, 

(37) | ƒ»*»(*) | = 0(n°En^(f)). 

This, combined with (35), enables us to indicate at once classes 
of continuous functions for which (6) converges for the above x. 
If, for example, (r = 0, 1, then (6) certainly converges (abso­
lutely) for the above values of x, if the first or the second 
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derivative of ƒ(#), respectively, satisfies in (a, b) a Lipschitz 
condition of an arbitrary positive order a, for then 

I ƒ**»(*) | = 0 ( ^ " 1 - « ) , ( a > 0 ) . 

The said convergence is uniform in any interval c (#, b) in 
which |0w(#)| = 0(n<T)1 with cr = 0, 1. 

(ii) More refined results are obtained from (12), with 
Gn(x) z=ILn(x; ƒ). We thus get, applying Schwartz's inequality 
to the integral on the right, and using (3) once more, 

(38) | Rn(x;f) | = En(f){l + (Kn(x))^} = 0(En(f)(Kn(x))^). 

(39) \Rn(x;f)\ =0(En(f)n*+"*), if | *n(*) | = O(n'), 

where <r> — 1. We recall that an/fln+i = 0 ( l ) for (a, &) finite. 
(iii) Still more refined results can be obtained [7, 8], if we 

again use (12), breaking up the integral on the right somewhat 
along the lines of (23) : 

ƒ» b /» c+e /» x—€n /•» x+en /» #+« f* & 

= J + J + J + J + J a *> a ** c+e *> x—en
 u x+tn

 d x+t 

= H + i% + h + H + i>5, 

(a<c^x^d<b;€n = o(l)(n->co)9 \ 0n(a) | =0(«"), <r> —1). 

In ii,5, where \x— y\ ^ €, we use Darboux's formula (9) for 
Kn(x, y) and get integrals of the type Jp{y)\<t>n{y)\dy which 
= 0(1) (by Schwartz's inequality), so that 

|fliB| = 0 ( ^ £ n ( / ) ) . 

In i2,4 put x—y = u\ then 

/

» b—a AAÊ 

— « 0 ( E » ( / ) - » * | l o g | 6 n | | ) . 
€n U 

Finally, in i3 use Kn(y) = 0(^2<r+1), so that 

By taking ew = "̂~'3, with a properly chosen /3>0, we can find 
the order of Rn(x;f) and the class of continuous functions for 
which lim^oo Rn(x;f) = 0. 

NOTE. In the case under discussion, by (30) and (16), 
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(40) ƒ p{y)R*(y)dy Z ƒ p(y) | f(y) - Un{y;f) \% ^ «„£„'(ƒ), 

(41) En(f)^ — ( E / M . 

A lower bound for En(f) is of importance in the theory of ap­
proximation. The relations (40) and (41), for a suitable orthog­
onal system {<t>n(x)}, furnish such a lower bound, very accept­
able for certain classes of functions [9]. 

2. Application of the Theory of Integral Equations. Rewrite 
(3) and (6), respectively, as 

(42) I $m(x)$n(x)dx = bmn, {my n = 0, 1, • • • ) , 
00 

(43) F(x)~J2 ƒ„*„(*), 

where 
*„(*) - (p(x)yi*4>n(x);F(x) =f(x)(p(x)y>*; ƒ„ = JF(X)*n(x)dx. 

Consider the formal expression 

tAA\ Vf \ A *n(x)*„(y) ^ 0»(«)0.(y) 
(44) jr(*, y) = 2- : = 00)K:y))1/22_, » n = 0 n̂ n=0 *n 

where /w denote constants. For finite (a, 6) the positive constants 
ln in (44) may be chosen in infinitely many ways so that its 
right-hand member converges absolutely and uniformly in 
(a,b). Take, for example, 

/„ = Mrfn1*01, (a > 0), Mn = max | <j>n(%) | in (a, b). 

The same holds for (a, b) infinite, if (p(x)) 1/2| <t>n(x) | does not ex­
ceed in (a, b) a finite positive quantity Mn for each n (example: 
polynomials of Laguerre and Hermite). We have then, by 
virtue of orthogonality, 

(45) (p(x))^d>n(x) = lnf (p(y))™K(x, y)<t>n{y)dy, 

(46) *n(*) = ln ƒ K(x9 y)$n(y)dy, (n = 0, 1, • • • ) . 
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Thus, in cases under consideration, the functions {<£n(x)} are 
the fundamental functions for the linear integral equation (46), 
and the expansion (43), which is but a modification of (6), may 
be studied by applying the general theory of linear integral 
equations, more precisely, the Hilbert-Schmidt expansion 
theorem, which in its simplest form can be stated as follows. 
Let K(x, y) be a symmetric continuous kernel in the domain a^x, 
y^b, and let œn(x)y (n= 1, 2, • • • ), denote the corresponding fun­
damental functions. A ny function of the form 

(47) f(x) = ƒ K(x,y)h(y)dy, 

where h{x) is square-integrable in (a, &), can be expanded in a 
series according to the con(#), which converges absolutely and uni­
formly ; the expansion is of the form 

(48) / • ( * ) - ! : -^ «»(*) , 

where 

hn = I h(y)un(y)dy , 

and where ln denote characteristic numbers. 
However, we encounter here two serious difficulties. First, 

the actual construction of the kernel K(x, y) in (45) and (46), 
depending largely upon the choice of the constants ln in (44), 
is not so easy to carry out even in the simplest cases of Legendre 
and Hermite polynomials [10, 11, 12]; secondly, the criteria for 
convergence of (43) (or (6)) thus obtained are far too strict, 
for the method, due to its very generality, does not utilize 
sufficiently the individual properties of the orthogonal func­
tions involved. Thus Weyl [ l l ] , applying the theory of inte­
gral equations to the expansion of a given function f(x) accord­
ing to Hermite functions {e~x<l^(j>n{x)} orthogonal in (— <x>, <x>), 
finds the said expansion converges if f(x) and ff(x) are continu­
ous and both integrals J_^x2f2{x)dxy J_Jn{x)dx exist. These 
criteria are far inferior to those obtained by other methods 
[13, 14]. Even more stringent are the criteria of W. Lebedeff 
[12] obtained by means of a different kernel. The same remark 
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applies to the discussion by the said writers of expansions in 
series of Laguerre polynomials. 

A different application of the theory of integral equations to 
OP has been given by N. Kryloff [15]. His main point is the 
following generalized Schmidts Lemma. 

Consider a sequence {wn(x)}f (w = 0, 1, • • • ), of class L2
% 

orthogonal and normal in (a, b), for which ParsevaVs formula 
holds, that is, for any fix) of class L2, 

/
p(x)dx = X) In , ƒ» = I f(x)o)n(x)dx. 

n=0 J 

If yp(x) is of class L2 and F(x, z) is such that fF2(xi z)dz^M 
(independent of z) for any z in (s0> %i), then 

(49) I F(x, z)\p(x)dx = 23 I F(x> z)œn(x)dx • I \p(x)o)n(x)dx, 

and the right-hand member converges absolutely and uniformly for 
zo^z^zi. (See the Hilbert-Schmidt theorem given above.) 

Suppose now we wish to investigate the convergence of the 
expansion 

(6) ƒ ( * ) = Z ) fn<t>n(x), fn = I p(x)f(x)<j>n(x)dx. 
n=0 J 

The ingenious idea of Kryloff is to identify (6) with (49), and 
then to apply the preceding Lemma. Choose, first, F(x, z) and 
the sequence {con(#)}, then yp(x), so that 

ƒ F(x, z)con(x)dx = ^w(^), (a ^ z ^ b), 

(so) J 

I \f/(x)oon(x)dx = I p(x)f(x)<t>n(%)dx, (n = 0, 1, • • • ) . 

If such a choice is possible, the right-hand member in (6) (where 
x is replaced by z) does become identical with that in (49), 
namely, 

oo oo /% (% 

J2fn<t>n(z) = 2 I ^(oc)oin(x)dx • I F(x, z)œn(x)dx. 
n=0 n=0 J J 

Hence it converges absolutely and uniformly in (#, b) to the 
value oif(x) (by virtue of (19)), if F(x, z) satisfies the condition 
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of the Lemma. Kryloff applies this method to Jacobi polynom­
ials in ( — 1, 1) and shows, on the basis of their differential 
equation (see below, (85)), that such a choice as required by 
(SO) is possible, if a, /3>1, and the expansion (6) converges 
absolutely and uniformly in ( — 1 , 1), if fix) and fix) are of 
class L$. 

3. Application of the General Theory of Orthogonal Functions. 
This is suggested by the very form of the expansion (43). The 
application in question, in order to attain the utmost in effec­
tiveness, should be coupled with the special properties of the 
OP involved. 

(i) Use of Rademacher-Menchoff theorem [16, 17]. This gen­
eral theorem deals with a sequence (con(x)} of functions ortho­
gonal and normal in the finite interval (a, &), and tells us that 
the expansion ^n=acnoin{x) converges almost everywhere in {a, b), 
ifYln=2^n log2 n converges.* (con(#) is of class L2.) 

This theorem, applied to (43), shows at once that (43) con­
verges to (P(x))ll2f(x) almost everywhere in the finite interval (a, b), 
if the coefficients fn are such that ]Cn°°=2./v2 \og2n converges. The 
latter condition is satisfied in one of the following cases : 

1. 0<p(x)<M, (Mûnite),orO<p(x)<M/((x-a) (ô -x) ) 1 / 2 , 
fix) is of bounded variation in (a, b) [18]. 

2. pix)>0; | / ( * ' ) - / ( * " ) | < c o n s t . / | l o g | x ' - x ' ' | | 1 + € , ( a £ * ' , 
x"t^b)\ [19]. The Rademacher-Menchoff theorem lays the 
emphasis on the coefficients fn in the expansion (6). 

(ii) Use of Lebesgue constants. Here the emphasis is placed 
on the orthogonal functions employed. Using the expressions 
(11) and (12) for the remainder Rn(x;f) in the expansion (6), we 
are led to introduce the Lebesgue constants : 

(51) 

Pn(x) - J p(y) I Kn(x, y) \ dy, 

ƒ ] n I 

J2 $i(x)$i(y) dy, 
I i=0 I 

* Note the presence of the factor log2 n. From the mere convergence of 
X»-2Cn2 follows only (by the Riesz-Fischer theorem) the existence of a function 
fix) of class L2 such that Cn^ ffix)(jonix)dx, (w=0, 1, • • • ). 

t And, a fortiori, if fix) satisfies in (a, b) a Lipschitz condition of an arbitra­
rily given order a (>0). 
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where x is given in (a, b)> (n = 0, 1, • • • ), and where 
pw = max pn(x), pn = max pn(x) for a ^ x ^ b. The symbol max 
here and everywhere means, when necessary, upper bound. 
Hence, if f{x) is bounded in (a, b), 

(52) | Rn(x;f) | ^ 2MPn(x) ^ 2MPn, (a ^ x ^ b; \ f(x) | ^ J f ) , 

by (11) ; and if f{x) is continuous in the finite interval (a, b), 

(53) | Rn(x; ƒ) | ^ £„(ƒ) {1 + Pn(x)} ^ En(f)(l + Pn), 

(a^x^b), by (12), where Gn(x) =IIn(x; ƒ). Here pn(x) is the 
upper bound of Sn(x; ƒ) for all f(x) such that \f(x)\ ^ 1 in 
(a, Z>). In fact, for such f(x), 

| Sn(x; ƒ) | g ƒ #00 | JTn(*, y) | *y = P*(*). 

Moreover, this upper bound is actually attained by the func­
tion ƒ(y) =sgn Kn(x,y).* Equation (53), by virtue of (32), shows 
at once that if {pn(x)} is bounded, then (6) converges to the value 
f{x) at the given point x for any continuous f(x), the said con­
vergence being uniform in any interval c (a, b) where the 
Lebesgue constants remain uniformly bounded (in x and n). 
On the other hand, if the sequence {pn(x)} is unbounded, it 
can be shown, following Haar [20], that there exist continuous 
functions whose expansions (6) diverge at the point x. In any 
case, if the order, with respect to n, of pn(x) or pn is known, 
equation (53), where (a, 6) is assumed to be finite, will show 
at a glance for what classes of continuous functions (6) con­
verges, by means of (35). If, for example, pn(x)=0 (log «), 
then (6) converges to f(x) a t the given point x} provided fix) 
satisfies in (a, b) a Dini-Lipschitz condition. In this connection 
it was shown by Rademacher [16] that 

(54) pn{x) = Ofa^Clog »)»'»+•) 

almost everywhere in {a, b)\ hence, (43) converges to (p(x))1/2f(x) 
almost everywhere in (a, b) if f(x) satisfies in (a, b) a Lipschitz 
condition of order > 1/2. 

* Note that sgna=+l> — 1, 0, corresponding to a >0, <0, =0. 
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The above discussion clearly shows the importance of the 
so-called "zero-" or "kernel series" (série-noyau, Kogbetliantz) :* 

(55) Z *n(*)*n(y) = (#(*)#(y)) 1 / 2È <t>n{x)cj>n{y). 

To illustrate, assume that 

00 

(56) X) 4>n(x)<i>n(y) = 0 for x j* y, (a S c ^ x, y ^ d ^ J) , 
n=0 

uniformly if | x — y\ ^e. Assume further, in order to simplify the 
discussion and to bring out more clearly the underlying ideas, 
that (56) holds in (a, 6),f and let f(x) be continuous at a certain 
interior point x (where p(x)^0). We have then J 

Sn(x;j) = (f* + f + f )p(y)f(y)ÈUx)cl>i(y)dy 
\ J a J x—e J x+e/ i=0 

= il + H + H , 

where ii = ö(l), i8 = 0(l) , by (56) ; 

ƒ• x+e n 

P(y)H 4>i(%)4>i(,y)dy 
x—t 1=0 

+ f P(y) if(y) -ƒ(*)] ÈUx)<t>i(y)dy =k'+ *,'; 
J x—e t=0 

* A penetrating investigation of this and related zero-series by E. Kog­
betliantz for various classes of OP has yielded in recent years extremely gen­
eral results regarding convergence and summability of the expansion (6) (see, 
for example, [14]). 

f Ordinarily (56) is satisfied when the series on the left is subjected to a 
certain process of summation, so that the conclusions drawn pertain not to 
ordinary convergence, but to summability. The latter, under additional hy­
potheses, may lead to ordinary convergence (see below, p. 72). 

{ The end points need special attention. Thus, if (a, b) is finite, we gen­
erally write fa

x~*=fa
a+en+fa+ïn> where en — o(\.) is properly chosen, and if (a, b) 

is infinite, say a— — » , then we write fZ^+j*^, where G ( > 0 ) is sufficiently 
large (or even depends on n and increases indefinitely with n). Similar remarks 
apply to b. In other words, we must properly specify the behavior of ƒ(x) near 
the end points. 
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*Y = ƒ ( * ) ( f - f - f )p(y)i,4>i(*)4><(y)dy 

- ƒ ( * ) + o(l) (by (8) and (56)); 

a 6 /» x— e /» & \ 

+ J + J^ J#(y)| 
«1?(€)(pn(*)+ö(l)) ; 

( I f(y) ~~ ƒ(#) I = ^(€) f° r # "•€ = ^ = # + e ; *?(*) —> o, as € —> o). 
Thus, we again come across the Lebesgue constants, namely, 

(57) Sn(x; ƒ) = ƒ(*) + rii(e)f>n(x) + o(l), (into -* 0, as e -* 0) , 

and this shows that limn-*ooSn(ff ; ƒ) ==/(^)> if the sequence \pn{x)} 
is bounded, even though the continuity of f(x) was here assumed 
at the point x only.* The important point here is that, due to 
(56), 

(58) Pn(x) = p(y) E 4>M4>i(y) dy + o( l) , (»—> oo). 

In general, the estimate of pn(x) requires the use of the asymp­
totic expression for <j>n(x). Another method based on a theorem 
of Fubini will be omitted [21]. 

4. Making Use of the Asymptotic Expression of 4>n(x) (n—»<x>). 
One can foresee that this method will prove the most powerful, 
for the said asymptotic expression is, we may say, a synthesis 
of the most intimate properties of <f>n{x). The essential features 
of this method may be exhibited as follows. For various classes 
of OP the asymptotic expression of </>n(x), for n-*<x>, has in the 
first approximation the following form : 

(59) <t>n(%) = A n COS (flty + C0n) H ~ , (?, p > 0) , 

and this holds in a certain subinterval of (a, &), where Any \{/, 
con, Bn are certain functions of x, with con, An, Bn depending 
generally on n, and An, Bn remaining bounded for n—><x>. Thus, 
for example, for Legendre polynomials [2, 22] : 

* In case f(x) is of bounded variation in the neighborhood of the given 
point x (the usual assumption made in dealing with (6)), the previous analy­
sis, somewhat refined, would introduce the quantities ƒ (x±0). 
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/ 2 V ' 2 4 2-4- •• In 
K \2n+\) VwV ' y 7T 1-3- • • ( 2 ^ + 1 ) 

l ( r y i \ TTI I l 
<cos ( n H }d> M 

(2s in0 ) 1 / 2 | L \ 2 / 4 J 2 2^ + 3 

K 3 \ 3TT1 
n H 10 

2 / 4 j 1-3 1-3 

2 s in0 2-4 (In + 3)(2« + 5) 

cos [(•+f>-s_r] 
(2 sin^O2 + 

= (^)1/2{cos[(w + -2-)^T] + f̂}' 
(— 1 + e ^ x = cos 4> ^ 1 — e). 

Similarly, for Hermite polynomials [13]: 

(61) / # 3 tf\ / »ir\ Bn(x)) 
+ 1 y(2n)-^'smlx(2ny^+ — ) + —1—V) 

where \x\ SA is finite and arbitrarily fixed. 
In the first place, we find, by means of Darboux's formulas 

(9), an asymptotic expression for Kn(x, y) and Kn(x), x being 
a certain given point belonging to the interval where (59) is 
valid. Next, again rewrite (10) in the form 

Sn(x;f) =((*'+ f "*'+ f )p(y)f(y)Kn(x,y)dy 
\Ja J x-e J x+€/ 

= H -r H + H, 

making the usual assumption that f(x) is of bounded variation 
in the neighborhood of the point x. The most difficult part of the 
investigation, which requires great ingenuity (and often labori­
ous computation) is to show that i\ and i% tend to 0, as n tends 
to infinity, for the asymptotic expression (59) does not hold, 
as a rule, at the end points. Here we must specify the proper 
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behavior oîf(x). The integrals i\ and iz having been disposed of, 
we proceed to the relatively simple investigation of i*. Using 
(59) and making a proper change of the variable of integration, 
we are led to a finite number of integrals of the form 

rf* 
(63) I u(z) ^QSmzdz, (a, 0 finite or infinite), 

/

* k sin mz 
u(z) dz, Dirichlet integral, 

o sin z 

J' k sin mz 
u{z) dz, (0 < h < k g TT/2). 

h sin z 
The behavior, for m—>oo, of these integrals is well known from 
the theory of trigonometric series [4]. Thus, (63) =0(1), if 
| u(z) | is L-integrable in (ce, /3) (Riemann-Lebesgue theorem) ; 
(64)—>(7r/2)^( + 0), if u(z) is of bounded variation in (0, TT/2); 
(65)—>o(l), for the same u(z). These three limiting relations 
enable us to complete our investigation ; (64) here furnishes the 
desired limit of Sn(x;f), (w—>oo), in terms of f(x±0). The gen­
erality of the results obtained in this manner depends upon two 
factors: (i) the thoroughness of the study of the components ii,3 
in (62), by which we can avoid unnecessarily heavy restrictions 
to be imposed upon the differentiability and integrability prop­
erties of ƒ (x), also upon its behavior at the end points ; (ii) the 
more or less comprehensive character of the asymptotic expres­
sion used, that is, its range of validity, order of magnitude, and 
nature of the remainder. Thus, Kogbetliantz [14] has obtained 
very general results on the convergence (and summability) of 
series according to Hermite or Laguerre polynomials, by using 
asymptotic expressions for <t>n(x) valid over an interval which in­
creases indefinitely with n. Haar [23], making use of the second 
approximation in (59), was able to establish the most interesting 
result in the theory of Legendre polynomials—the so-called 
"equiconvergence theorem" (see Introduction) : ƒ(#) being of the 
class L2, its expansion (6) in series of Legendre polynomials be-
haves, with regard to convergence or divergence at any interior 
pointx = cos6, (O<0<7r), like the Fourier cosine-series expansion 
of f (cos 0), that is, denoting by crw(0) the partial sum of the latter 
series, we have 
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lim [5n(cos 0) - <rn(0)] = 0, (0 < 6 < TT). 
n—»oo 

Quite recently, Szegö [24] has developed for Jacobi polyno­
mials with arbitrary a, j3(>0) (see (5)) asymptotic expressions 
in terms of Bessel Functions, instead of trigonometric functions as 
in (59)-(61). His asymptotic expressions have the advantage of 
being valid uniformly in any left-hand neighborhood of the end 
point x = l. Thus one of the difficulties mentioned above is 
obviated, and we obtain in a simple manner the asymptotic 
expression of the Lebesgue constants and of many other definite 
integrals involving Jacobi polynomials. The most important 
application which Szegö makes of his asymptotic expressions is 
to derive a general "equiconvergence theorem," which, in case 
of Legendre polynomials, holds even for a more general class of 
functions than that in Haar's theorem (see below, p. 78). 

In order to illustrate the difficulties arising in case of an in­
finite interval, we proceed to sketch the ingenious method of 
Uspensky in dealing with Hermite polynomials [13], We write 
here 

Sn(x; ƒ) = ( ƒ G + ƒG + JG y~v2f(y)Kn(x, y)dy 

= k + H + is, (G>0, sufficiently large). 

The integral i^ is reduced to the Dirichlet integral as usual, 
and furnishes in the limit, for n—»<x>, [f(x+0)+f(x — 0)] /2, 
(f(x) being of bounded variation in the neighborhood of the 
given point x). We now turn to i% (the analysis is similar for ii). 
First, by Schwartz's inequality, 

e-y2f(y)dy • er+Kfix, y)dy. 
G J G 

The first factor in (66) does not cause trouble under the liberal 
assumption 

(67) J» oo /* —A 

r^P{y)ày, and also J e~^f\y)dy, 
A J - o o exist for some A > 0. 
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We proceed to show that the second factor—*0 as w—»oo. By 
(9) and (10), 

(In + 2)1 '2 r °° 2 
<t>n+\(%)<l>n(0C) — <f>n ( # ) < £ n + l ( # ) = I C~V Pn {j)dy 

2 J -a, 
/2n + 2\1^/ r-G no n *\ 

= T' JL. T'f _i_ / / / / . 

0n-f l ( ^ ) 0 n ( ^ ) ~ 0n ( ^ n + l M 
Pn(%, y) = , 

% — y 
where x is fixed and finite. The ingenious method of Uspensky 
consists in first evaluating asymptotically Ini as a whole, using 
on the left side of (68) the asymptotic expressions of <j>n(x), <j>n (x) 
(the latter also being a Hermite polynomial), then evaluating 
asymptotically J w " ,by using the above asymptotic expressions 
under the integral sign (the interval of integration being finite). 
By subtraction we find at once the order of magnitude of II, l'n"f 

and this completes the discussion of Hy without any further restric­
tion being imposed on f(x). Laguerre polynomials are treated in a 
similar way. The criteria of convergence of (6) thus obtained 
are very sensitive indeed. 

I I I . SOME SPECIAL METHODS FOR INVESTIGATING THE 

CONVERGENCE PROPERTIES OF THE EXPANSION (6). 

1. From Summability to Convergence. I t is well known [25] 
that the Césaro (C), Abel (^4), or Euler (E) summability of an 
infinite series X n̂°°=ô n= U implies its ordinary convergence if 
un is properly restricted. Thus, (i) if U is (C, k) summable, and 
un = 0(l/n), then the series converges (Hardy); (ii) if U is 
A -summable, and un = 0 ( l /w) , then the series converges (Little-
wood). The existence of generating functions for the classical 
OP, tha t is, 

00 

H%> *) = 12 Cn<l>n(x)tn, {Cn = COnSt.), 

whose explicit expressions are known, suggests in the first place 
Abel-summability. This was carried out by Hille [26] for La­
guerre polynomials, where 
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e~xt « /Yin + a)yf2 

(69) 7r~^ = ^ (~ 1 ) n ( ^ T ^ ) +*(x)'n> (l - ty w«o \r(» + 1)/ 

where | /| < 1, and where x is finite and arbitrary. Corresponding 
to the expansion (6), we construct the series 

00 

(70) F(x, t) - Y,U4>n(x)tn, (x è 0, fixed). 

Making use of the asymptotic expression for 4>n(x) and of the 
expression of fn, we show, first, tha t F(x, t), as a function of /, 
is holomorphic for \t\ < 1 ; next, that for /—>1 —0, F(x, t)—»/(#o) 
or [ / (x 0 +0)+ / (xo~0) ] /2 , at every point x0 of continuity or of 
discontinuity of the first kind, respectively; in other words, we 
show that (6) is A-summdble, if fQe~axx0l~l\f{x)\dx exists for 
every a > 1/2. By Littlewood's theorem, (6) will converge at x = x0 

(to the above value), if ƒ (x) is such that 

(71) Mn(xo) =0(n~i). 

For x0>0 and a = l, (t>n(xo) =0(w~"1/4); hence (71) is certainly 
satisfied if 

(72) / . - 0 ( » - » ' « ) , 

which is shown to hold if ƒ(#) is subject to some further restric­
tions. 

2. Application of the Closure Equation (15). We follow here, 
with considerable modification, the method developed by 
Stekloff [27] for the case where 

(73) p(x) ^Po>0} 

p'{x) exists and is bounded in the finite interval (a, b), 

(74) f(x) is of class Zp
2 in (a, b). 

Write 

(75) f(x) = E fMx) + i?n; f'(x) = £ ƒ,0/ (a?) + #n ' , 

where Rn denotes Rn(x;f), and where RJ denotes dRn/dx. By 
virtue of orthogonality, we get at once 
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(76) p{x)Rn<j>i{x)dx = { 
[0, (iûn), 

> n). 

This shows that 

I p(x)RnGn(x)dx = 0, 

and the second relation in (75) yields the fundamental relation 

(77) J p{x)RnGl{x)Rn
,dx =* J p(x)RnG1(x)f(x)dx, 

(Gi(x) = go + gi#; g» = arbitrary constants, independent of w). 

In (77) integrate by parts on the left and apply Schwartz's 
inequality on the right. This gives 

\ r I I 1 C \x==b 

p(x)RnG1(x)Rn
/dx\ = \—<p(x)Rn

2G1(x)\ 

(78) - f R2 ^ ~ p(x)G1(x)dx - gl f p{x)R2dx\ I 

â f p{x)R2dx . f p(x)f2(x)Gl
2(x)dx = Ö(1) , 

(»—> cc ; by (16)). 

Moreover, by (73) and by use of the closure equation in its 
form (16), 

/

fi'(x) C 

p{x)R2——dx = o(l), gx pR2dx = o(\), ( » ->oo) , 
p(x) J 

so that (78) leads to 
p(x)Rn

iG1(x)\ = o ( l ) , ( » - » » ) . 

Taking here Gi(x)=x — a, x — b, we obtain 

(79) p(b)Rn
2(b;f) = o( l) , p{a)R2{a-yf) = o(l) , ( n ->oo) , 

which, expressed in words, states that, under conditions (73) 
and (74) tóe expansion (6) converges for x=a, b to the values f (a), 
ƒ (ft), respectively.* 

* In some cases this alone is a sufficient basis for the conclusion that (6) 
converges for all x in (a, b). 
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In order to investigate Rn at any interior point, we need a 
further assumption as follows: 

(80) ƒ"(*) is of class Lp
2. 

We then add to (75) the following relation: 

ƒ"(*) = È f*/>"(*) + Rn", Rn" = •— Rn, 

and proceeding as above, we get 

(81) f p(x)RnG2(x)Rn"dx = \ p(x)RnG2(x)f"(x)dx = o(l) , 

( « —> 00 ) . 

Now take G^x) = (x — a)(b — x), which is ^ 0 in (a, b), and inte­
grate by parts on the left side. Then 

(82) 
/

p'(x) r 

- p(x)RnRn
,G2{x)dx + p{x)RnR^Gi (x)dx 

p(x) J 
+ J p(x)RpG2(x)dx = o(l), ( » - » oo). 

Here the middle term is #(1), by (78), and 

/

'fi'(x) I 

— — p(x)RnRnG2(x)dx a p'(x) r \1 / 2 

— —R*d% • I p(x)R:2dx) = hyo{\)(Inyi\ 
I # ' ( * ) I i i 

h = max , y = max | G2{x) | in (a, £), 

I # ( * ) I 

In= ) p(x)R^2G2(x)dx} 

so that (82) becomes 
(/.)1 /2-0(l) + / n = o(l) , (» ->«>) , 

whence the important result, 

(S3) 7n = j p(x)R^(x - a)(b - x)dx = o(l) , ( » - * o o ) . 
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Consider now the identity 

IX /* X / » X 

p(x)cj>(x)Rn
2\ = I [p(x)<t>(x)R2Ydx = I p'(x)<f>(x)R2dx 

\a J a J a 

ƒ» x /• x 

p(x)<f>'(x)R2dx + 2 I p(x)<t>(x)RnRr!dx 
a J a 

= ii + H + iz, (<K%) = (x — a)(b — x)). 
By the above considerations, 

11,2 — 0(1) uniformly in a;, (n—» <*>); 

| *31 ;ê 2- f - V f p(x)R*dx- \ p(x)RJi2<i>(x)dx\ =<?(1), 

whence we reach the final conclusion that 

p(x)(x - a)(b - x)Rn
2(x) = o(l), (rc->oo), 

uniformly for a^x^b; that is, under conditions (73), (74) #7^7 
(80), the expansion (6) converges to f(x) uniformly in the interval 
( a+e , b — e). 

The method is applicable to a more general p(x)y of the form 
(x — a)a~1(b — x)8~lq(x), (a, j3>0). We must point out, however, 
that the conditions imposed on f(x) are far too stringent. This 
is compensated by the simplicity of the method, which requires 
neither the discussion of the coefficients fn, nor the use of the 
asymptotic expression for (/>n(x). On the contrary, if we apply 
the above considerations to f(x) = (j>n+i(x), we obtain directly 

\4>n(c)\ =(2n + l/p(c)yt*(l+0(l/n))} (c = a, b). 

3. Use of the Differential Equations f or the Classical OP. These 
can be written as follows : 

(84) A(x)4>Jil(x) + B(x)<j>'n(x) + Cn<t>n(x) = 0, 

where A and B are polynomials of degree ^ 2 , independent of ny 

and where Cn denote constants. 

(J) (1 - x*)<t>t' ( * ) + [ « _ 0 - (« + fi)x]^ (*) 

+ n(n + a + fi - l)cj>n(x) = 0, 

(L) x<t>n' (x) + (a — x)4>n(x) + n<t>n(oc) = 0, 

(H) 4>£'(x) - 2x^(x) + 2ncj>n(x) = 0, (n = 0, 1, • • •)• 
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From this we learn at once, by differentiation, tha t <fin(x) is an 
OP of the same class, with p{x) replaced by pi{x)=A(x)p{x). 
Denoting the normalized </>w' (x) by ^n_i(#), we derive, by a 
simple computation, the following important relation which 
holds true for all classical OP: 

(86) *n' (*) = (OO^Vn- iW, (» = 1, 2, • • • ) , 

where 

(87) I pi(x)\l/m(x)\pn(x)dx = 8mn, 

where rn, n = 0, 1, • • • , and where pi(x) = A(x)p(x). Further­
more, it is readily seen that for all classical OP 

(88) (A(x)p(x)Y = B(x)p(x), A(x)p(x) = 0 for x = a} b. 

Assuming now the existence in (a, b) of ƒ'0*0 of the class Lp
2, 

(88) enables us to treat the coefficient fn as follows. We write 

Cnfn = I p(x)f(x)Cn<t>n(x)dx 

= ƒ #(*)ƒ(*)[- 4*»".(*) ~ £*»'(*)]<**, 

whence, by integration by parts, in virtue of (86) and (88), 

(89) fn = JÎl±-, 

where 

ƒ 00 

pi(x)f(x)fnr-i(x)dx, that is, f(x) ~ X) fn'tn(x). 

We have now 

4>n2(*)l 
| fn<t>n(x) I = 

, 0» (* ) 
Jn—l' I * 7 Y - I +"err 

Here the series 23„°li/n-i certainly converges (closure), and 
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(J) <tt (x)/Cn = 0(«- 2 ) , ( - l + « g ï g l - « ) ; 

(L) ^ W / C „ = 0(W-3 '2), 

( 0 < € ^ x S A\ A finite, fixed arbitrarily) ; 

(H) <f>* (x)/Cn = O ^ 2 ) , (\x\^A). 

Hence, the expansion (6) in series of classical OP converges 
uniformly and absolutely in the respective intervals as given in 
(90), if f'(x) is of the class Lg in (a, b). 

The same results could be obtained, without making use of 
the asymptotic expression for <fin(x) (necessary to establish (90)), 
if we combine the use of the differential equation with that of 
closure as in the previous section (this would eliminate the intro­
duction of fix)). 

4. Comparison Method. The problem before us is: Given 
pi(x)^p2(x) in (a, 6), where pi(x) and p*{x) are two weight-
functions, find a corresponding qualitative relation between the 
partial sums of the two corresponding expansions (6) of the 
same function ƒ (x). This problem was solved by Szegö [28]. The 
basis of his analysis is the solution of the following two-parameter 
extremal problem. 

Given in ( — 1, 1) a weight-function p(x) and a function F(x) 
such that F(x)/p(x) and F2{x)/p{x) are both of class L, find max 
{XGn(£) +fxf_1F(x)Gn(x)dx}2, (X,/x parameters,^ a fixed point inside 
( — 1, l)),for all Gn(x) satisfying the condition J__1p(x)G^ (x)dx = 1. 

Introduce the OP corresponding in ( — 1, 1) to p{x) and write 

n n 

Gn(x) = ^2 7i(/>i(x), 7i being constants,with 23 y»2 = 1. 
i=0 i=0 

F(x) oo •» 1 

53 0Li</)i(x)9 ai = I F(x)4>i(x)dx, 
i=o J-i 

F(x) » / F\ 
—— = 2L, oii<t>i(x) + Rn = Sn[ x; — ) + Rn, 
P(x) t-=0 \ pi 

Un(\ M) = |xGn(Ö + M ƒ F(x)Gn(x)dx\ 

= { Z 7<[X*<(0 + liai]] , Ê Ti2 = 1 • 
V 1=0 / t = 0 
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Then, by Cauchy's inequality and (13), 

n 

Mn(\, M; p) = max J7n(X, M) = ]C (M>;(£) + A"*;)2, 
i'=0 

Jlfn(X, / i ; # ) - \*Kn(S) + 2 X M Z «<*<(*) + M 2 Z otf 
1=0 t=0 

(92) = x»*n(ö + 2xM̂ n (*;—) + ^2£/» (—) » 

Uni — ) ^ E ^ 2 ^ -7— d * S ^ ) ' 
\p/ i=o •/ ƒ>(*) 

On the basis of the condition f_1p(x)G£(x)dx = l, we readily 
verify that 

pi(x) ^ p(x) :g ^2(^) in (— 1, 1) implies 
(93) 

MnÇK, /*; pi) ^ Mn(\, Mi p) S Af»(X, /*; #i). 

Hence, the difference M»(X, ju; p)—MnÇk, ju; p2), which is a 
quadratic form in X, /*, is positive for all real X, ju. Expressing 
the fact that its discriminant is non-positive, we get, replacing 
F(oc)/p(x) by ƒ(#), of class Lp

2, and writing Sn(x; p))Kn(x;p)i 

Un{p), 

p(x) ^ p2(x) in (— 1, 1) implies 

[Sntt; #) - 5n(f; p2)fs Un(p)-[Kn(S;P) - i^n t t ;^ ) ] 
(94) 

where 

#(#) = f P(x)f(x)dx. 

This is the desired relation between Sn(x; p) and Sn(x; p2). 
Incidentally we have found here before (94) two other important 
relations of the same kind : 

(95) px{») S p(x) £ p2(x) in ( - 1, 1) 

implies 

Kn{$- p{) ^ Kn(Z; p) ^ Kn(Z; p2), Un(p0 g Un(p) ^ Un(p2). 
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It now follows that 

(96) Pi(x) ^ p(x) é p%(x) in ( - 1, 1) 

implies 

(S„(£; px) - S„(£; #,))* =g U(p)[Kn(^; pt) - *„({; pt)]. 

Thus, if we succeed in choosing piix) and p2(x) in such a manner 
that 

pi(x) ^ p(x) ^ p2(x) in ( - 1, 1), 

Knfapi) - Kn(£\p2) = o(l), {n -> oo ; £ given inside ( - 1,1)), 

then (94) leads directly to an equiconvergence theorem,, namely, 

(98) lim [Snfo p) - Sn(£\ p%)] = 0. 
n—>oo 

Szegö shows that such a choice of pi(x) and pi{x) is possible, if 

(p{x) = (1 + a )* - 1 ^ - x)^V(^),with 1/2 ^ a, |8 ^ 3/2, 

\q{x) bounded and positive, p{x) is i£-integrable in (— 1,1), 

provided at the interior point £ under consideration p{x) is con­
tinuous with its first and second derivatives. We then can take 

(1 - x2)1'2 1 
(100) px(x) = ±—— , p2(x) = Pi(a) ' r (1 - x*yi*P%(x) ' 

where Pi(x) and P^ix) are polynomials greater than zero in 
( — 1 , 1) ; and we can choose the polynomials Pi(x) and PÏ(X) SO 
that, in addition to the first condition (97), 

J
1 log p2(x) — log p(x) dx 

- i (x - £)2 (1 - x2)1 '2 

(pm = p(o = M«))« 
Szegö then obtains an explicit expression for (j>n(x\ £i,2)(from 
a certain n on) using Fejér's theorem on the trigonometric rep­
resentation of positive polynomials [29], and by means of 
Darboux's formulas shows that the second condition (97) is 
also satisfied. Incidentally we find in this way an asymptotic 
expression for Kn(x; p) and </>n(x; p). Thus, (98) is established. 
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But this is an intermediate step only. The desired equiconver-
gence theorem in its final form is 

(102) Snfap) — = 0(1), (» ->«>) , 
V ' K ' *' ^(0(1 -£2)1/2 W ' V " 

where <r„(£) represent the nth. partial sum at the interior point 
£ = cos do of the Fourier cosine-series expansion of the function 
picos 0)/(cos 0)|sin 0\. This is readily established, by first 
showing that (102) holds true for p*{x) (where the explicit 
expression of </>n(x; pz) is known) and then again using (96). 
Taking q(x) = l, we obtain the equiconvergence theorem for 
Jacobi polynomials, with 1 /2^a , /5^3/2 . 

IV. ILLUSTRATION OF THE GENERAL METHODS DISCUSSED 

ABOVE BY M E A N S OF LEGENDRE POLYNOMIALS. 

The Legendre polynomials 

/2n+ lV / 2 

<t>n(X) 1) = ( ) Pn(%), 

where 
1 °° 

= Y, Pn(oc)tn, 
(\-2tx + pyi* zi> 

have, among others, the following properties: 

* » ( - X) ES ( - 1)^W(X); I 4>n(X) | ^ | <*>„( + 1) | = 

( — l ^ x ^ l ) . Applying the preceding general methods to the 
expansion (6) of a given function f(x) according to Legendre 
polynomials, we obtain the following results regarding its con­
vergence. 

(i) Case of continuous functions. From the estimate of 
fn<t>n{x) we learn that (6) converges absolutely and uniformly 
in ( — 1, 1) if fr{x) satisfies therein a Lipschitz condition of 
order > 1/2. From the estimate of Rnix; f) we learn that (6) 
converges uniformly in any fixed interval ( — 1+6, 1—e), if fix) 
satisfies in ( — 1, 1) a Dini-Lipschitz condition, and uniformly in 
the whole interval ( — 1 , 1), if fix) is therein continuous. 

(ii) Use of integral equations. The kernel here is [10 ] 

/2n + IN1'2 

V~T~7 ' 
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K(x, y) = 

log (1 - y) + log (1 + x) + 1 - 2 log 2, 

log (1 + x) + log (1 - y) + 1 - 2 log 2, 

The series (6) converges absolutely and uniformly in ( — 1, 1) 
if ƒ (x), ƒ ' (x), and /"(V) are therein continuous. 

(iii) Application of the Rademacher-Menchoff theorem. The 
series (6) converges almost everywhere in (-—1, 1) if f(x) is of 
bounded variation in ( — 1, 1), or if 

I ƒ(*') - ƒ(*") | • | log | %' - x" | |1+e < const., 

( - 1 ^ *', a" g 1). 

(iv) Use of Lebesgue constants. Here 

pn(x) ~ log », ( — 1 < a < 1), pn(± 1) ~ n112. 

The series (6) converges uniformly in ( — 1 +€, 1 — e) or in ( — 1, 1), 
if f(x) satisfies in ( — 1 , 1) a Dini-Lipschitz condition or a Lip-
schitz condition of order > 1/2, respectively. 

(v) Use of the asymptotic expression of </>n(x). At any interior 
point x = cos 6, (6) behaves, regarding convergence or divergence, 
(a) like the ordinary Fourier series expansion of ƒ (cos 6), if f(x) 
is of the class L2 in ( — 1, 1) ; (b) like the ordinary Fourier series 
expansion of /(cos 0)|sin d\, if f(x) is of the class L in ( — 1 , 1) 
and J_X{1 — x2)~1/4| fix) | dx exists. 

We may add that if we wish to discuss the effect of singulari­
ties of f(x) at the end points x = ± 1 on the convergence (or 
summability) properties of (6), the zero-series (p. 65) proves 
the most effective tool. 

We see that the weakest method is that of integral equations, 
the strongest one, that of asymptotic expressions. Note that the 
latter enter explicitly or implicitly in many other methods deal­
ing with the convergence of (6). The above considerations apply 
not only to ordinary convergence, but also to summability of 
(6), as was pointed out above. They also remain valid in 
many parts if we replace p{x)dx by the more general d\//(x), 
where \p(x) is monotonie non-decreasing in (a, b), and use Stieltjes 
integrals. 
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We have had to omit in our discussion many other interesting 
topics. The most important are those that follow. 

(i) Gibbs' phenomenon, familiar from the theory of ordinary 
Fourier series. 

(ii) The problem of Cantor. Can we have 2^o0„0 w (# ) =0 , 
(aSxHkb), without having an = 0 for all n? This is evidently 
equivalent to the problem of uniqueness of the expansion of a 
given f(x) in series of orthogonal polynomials: can we have 
X^n%M>n(#)=ƒ(>), 2"-o*n0n(*) =ƒ(*) f ° r certain x, without 
having an = bn for all n? 

(iii) The problem of Dubois-Reymond. Assume the existence 
of fp(x)f(x)(j>n(x)dx=fn, ( » ^ 0 ) . If ]££"oan0n(ff) =f(x) on a 
specified set Ec (a, b), can we conclude that an=fn for all n? 
This is equivalent to the problem of term by term integration of 
the above series. 

These problems and many others on the general OP offer 
a vast and fruitful field of research. In some special cases (poly­
nomials of Legendre, symmetric Jacobi polynomials), interesting 
results have been obtained by Plancherel and Kogbetliantz. 
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