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converge to a function </>(V) analytic in 5 and such that | <f)(z) | <1 
for z in S. Since the original sequence {pn(z)} converges by 
hypothesis in R, the limit function of the subsequence would 
necessarily agree with ƒ(z) in R. But <j>(z) could not be identical 
with f(z) in R} for then <j>(z) would have to equal unity at in­
terior points of S, namely, at the boundary points of R which lie 
interior to S. 

It would appear from this remark that Theorem 1 (and Theo­
rem 2 as well) might admit of extension to an arbitrary finite 
simply connected region whose complete boundary is also the 
boundary of an infinite region, and that a modification of the 
methods used in the proofs of the present paper would serve to 
establish such an extension. The writer hopes to answer this 
question in a later paper. 
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NOTE ON A SIMPLE TYPE OF ALGEBRA IN WHICH 
T H E CANCELLATION LAW OF ADDITION 

DOES NOT HOLD 

BY H. S. VANDIVER 

1. Introduction. I do not imagine that the algebraic system 
considered in this note can be new, but if it has been overlooked 
this has probably happened because of its simplicity. However, 
we shall be most interested here in examining the connection of 
the system with the foundations of ordinary algebra. As we shall 
see, the symbols employed have most of the properties of ra­
tional integers, the principal exceptions being that they are 
finite in number and from 

a + b = a + c 

we cannot infer b = c in general.* 

2. Description of the System. Suppose we introduce the natural 
numbers 1, 2, 3, • • • , employing for their use Peano's system 

* In a system in which we may always infer b — c under the condition given 
we shall say the cancellation law holds. 
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of axioms. Instead of building up ordinary arithmetic by con­
sidering the operations of addition and multiplication on the 
natural numbers, we may introduce symbols 

(1) Ci, C2, Cz, • • • , 

a relation symbolized by ( + ) and another by ( = ), and such 
that 

Ci + C\ = C2, C<L + C\ — C3, • • • , Cn + C\ = Cn', • • • , 

where n denotes a natural number and n' its immediate succes­
sor in the set of natural numbers. We also write 

and by employing equality axioms and induction we obtain from 
this the associative and commutative laws of addition, involving 
the C s in a similar manner to that, for example, employed by 
Pringsheim.* 

We introduce an operation, multiplication, such that 

and employing these we may prove by induction, as did Prings­
heim, the distributive law, the associative law, and the com­
mutative law of multiplication involving the C's. 

All the above mentioned arguments are independent of any 
possible equalities among the C's. If we assume that Cm = Cn if 
and only if m and n denote the same natural numbers, then con­
sider the relations 

Ci + Cj = Ck and CiCj = Cw. 

Suppose we replace any such relations by 

i + j = k and ij = m; 

then we have an example of isomorphism, there being a one-to-
one correspondence between the subscripts of the C s and the 
natural numbers themselves under addition and multiplication. 

This gives the elementary arithmetic of the natural numbers. 
We shall employ, for convenience, this arithmetic in what fol­
lows, although the system considered is really independent of it. 

* Vorlesungen iiber Zahlen und FunkHonenlehre, vol. 1, part 1, pp. 4-30. 
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Let us assume now that G, C2, • • • , Cj are distinct, but 
C» = C/+i with j + l>i', then in the set (1) there are just j dis­
tinct elements 

(2) Cl, C2, C3, • • • , C», • • • , C;, 

since 

Cj+i = Ci and C?-+2 = C,-+i, 

and i + l ^ j + 1. To indicate a certain property of the set (2) 
we shall consider a special case. Suppose that G, C2, • • • , C6 

are distinct and that C7 = C4; then from C6 + Ci = C3 + G î^e azw-
WÖ/ i ^ r Ce = Cz ; /Aa/ is, //É£ cancellation law of addition does not 
hold in this algebra. 

We also see from the way in which it was introduced that 
this system (2) is just as elementary and natural as ordinary arith­
metic. I t is obviously not a ring in general. If we take the par­
ticular case, however, where i— 1 in (2), then 

for m = 1,2, • • • ,7, and also 

so that Cj has the properties of a zero element, and the set (2) 
is isomorphic in this case to a complete system of residue classes, 
modulo j , and forms a ring. 

3. Semi-Groups. To derive properties of this finite arithmetic 
(as well as rings) and to classify it among the different types of 
abstract algebras it is very convenient to employ the concept 
of semi-group, which will be defined as a set of elements which 
is closed under a certain operation symbolized by O , such that 
the associative law holds between the elements of the set com­
bined under this operation ; in other words, the set forms a group 
without the restriction that for A and B in the set there exists 
an X such that A O X = B, and a Y such that F O A = B. Also 
the usual equality axioms hold. 

If in addition we may infer from 

A O B = A OC and B O D = C O D, 

the relation 



I934-] A TYPE OF ALGEBRA 917 

B = C, 

A, B, C and Z) denoting any elements of the set, then we shall 
call the set a quasi-group* We shall now write, in any semi­
group, AB for A O B} and An for A O 4̂ O • • • to ^ terms. 

If an element I exists in the semi-group S such that AI = A 
and IA=A for any A in 5, then 7 is called the identity or unity 
element of S. It is easily seen that there cannot be more than 
one identity element of a semi-group. A unit element of 5 (con­
taining an identity element) is an element V in S such that there 
exists a V' and U" in S for which UU' = I and UnU = I. 

An element C of any semi-group 5 is called cancellable if from 
CA = CB and M" C = iVC, we may infer A = B and M = JV f or any 
4 , i?, M and iV in 5 ; otherwise we shall call it non-cancellable. 

We shall now prove the following theorem. 

THEOREM 1. In order that a finite semi-group contain a can­
cellable element it is necessary and sufficient that it contain an 
identity element. 

Let 

(3) AhA2, - • • ,Ak 

be the distinct elements of a finite semi-group S and assume 
that C is a cancellable element of S\ then 

(3a) CAhCA2, • • • ,CAk 

is a permutation of (3), because CAi = CAj gives Ai=Aj, since 
C is cancellable. Hence for a given An in (3) there is an Ax in 
(3) such that 

(4) Ci4, = i4A. 

If C is cancellable, so is Cr. In the set 

C, C2, C3, • • • 

we must have repetitions since the set is finite. Let 

with e>0. If / > 1 , then, since C*~l is cancellable, we obtain 

* Dickson, Transactions of this Society, vol. 6 (1905), calls this system a 
semi-group. 
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(5) C = 0 + 1 

so that this relation holds for all cases. Now for a given h con­
sider Ax from (4) ; we shall have from (5) 

CAX = C«(CAX), 

and 

(6) Ah = CM, . 

Similarly, considering in lieu of (3a) the set 

AlCJA2Cy • • • ,A£, 

we obtain 

(7) An = AhC% 

so that (6) and (7) show that Ce = I is an identity element of S. 
The condition of the theorem is sufficient since from AI = AI we 
have A=A and similarly for I A =IA. 

The relation (4) and its analogon AyC = Ah give the known 
result that any finite quasi-group is a group; hence my intro­
duction of the term quasi. 

4. Properties of the System. Consider a finite semi-group given 
by powers of a single element A. It may have the distinct ele­
ments 

A A2 - - - A1 - • • Ai 

with 

A*1 = A\ 

This set is isomorphic with the additive semi-group (2). The 
elements 

A*, • • • ,A* 

are known to form a group. (This is conveniently proved by 
first noting that they form a quasi-group.) Applying this state­
ment to the finite algebra given by (2), we obtain the result 
that d, Ci+i, - • - , C] form under addition and multiplication a 
ring. 

Although there may be no zero elements in the set (2), yet 
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we may have non-cancellable elements in the semi-group formed 
by multiplication of the elements. For if j = 6, £ = 4, we have 

C2C2 — C0G2, 

but we cannot infer 
C2 = C5. 

Hence, the system differs from a ring in this respect, for in the 
latter a non-cancellable element under multiplication is neces­
sarily a zero-divisor. 

If, in the relation (2), i>l, then there is no zero element in 
the set, or considered as an additive semi-group there is no iden­
tity element in the set; hence, by Theorem 1 there is no can­
cellable element under addition. This is in sharp contrast to the 
case when i = 1, in which case we have a group under addition 
and all the elements are cancellable. 

Considering the multiplicative semi-group of (2) for i= 1, we 
have the case where the system is isomorphic with the residue 
classes, modulo j , so that the cancellable elements are known. 
For i>l there is no cancellable element except Ci, for the can­
cellable elements form a quasi-group and therefore a group 
which includes G; hence, if Ca is cancellable, there is a C& such 
that 

CaCb = Ci, 

which is impossible, since ab>l and i>\. 
The various properties we have established for (2) may be 

stated as follows. 

THEOREM 2. Under addition and multiplication with the as­
sumptions given y the set (2) forms an algebra in which f or i>l, 
the additive semi-group of the algebra contains no cancellable ele­
ments and the multiplicative semi-group contains no cancellable 
elements other than C\. The elements d, C»+i, • • • , Cjform a ring 
which for i = l is isomorphic with the system of all residue classes, 
modulo j . 

5. Extensions and Modifications of the System. We may obtain 
other algebras which have the property that cancellation under 
addition is not possible in general and multiplication is non-
commutative by taking the system of all square matrices of 
order n whose elements are contained in (2). 
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Suppose we consider the natural numbers and consider a rela­
tion* between them which we shall call equivalence, symbolized 
by ( = ), such that if a and b are natural numbers and if a<i, 
then from a = b it follows that a — b, and if a and b^i, then 
a = b (mod m). For m=j — i+l, we obtain a system which is 
isomorphic with the C's in (2) provided equivalence takes the 
place of equality, the number of non-equivalent integers being j . 
Using this relation between rational integers, we may consider 
conditional equivalences, such as 

x2 = a, 

where a is a positive integer. The question naturally arises as 
to possible generalizations of the law of quadratic reciprocity, 
since equivalence is an extension of the idea of congruence. 

6. The System as a Type of Algebra. As to the place of our 
system among known types of associative algebras in which the 
usual distributive laws hold, we may first define a ring as a sys­
tem of elements which form an Abelian group under an opera­
tion called addition, a semi-group under multiplication, and in 
which the right and left hand distributive laws hold. But num­
ber theorists have worked since the beginning of the history of 
their subject in systems which are not always rings, for example, 
in connection with the problem of expressing a positive integer 
as the sum of positive cubes. The positive integers under addi­
tion form an Abelian quasi-group in lieu of an Abelian group. 
The next natural generalization is to replace quasi-group by semi­
group, and if this is done, our system (2) exemplifies an algebra of 
the type where the elements f or m a semi-group under addition, but 
not a quasi-group. 

We may, indeed, proceed further and define a semi-ring or 
associative algebra as a set of elements forming a semi-group un­
der addition, a semi-group under multiplication, and in which 
the right and left hand distributive laws hold. This leads us 
naturally to the consideration of associative algebras in which 
addition is not commutative, that is, the restriction "Abelian" 
is removed in connection with the original definitions of addi­
tion. Certain of these types I hope to take up in another paper. 

T H E UNIVERSITY OF T E X A S 

* As suggested by A. Church. 


