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ON T H E ENUMERATION OF MAGIC CUBES* 

BY D. N. LEHMER 

1. Introduction. Assume the cube with one corner at the origin 
and the three edges at that corner as axes of reference. In a 
magic cube the sum of the numbers in any line parallel to any 
one of the three axes is the same, and since the sum of all the 
numbers up to Nz is N3(Ns+l)/2, the sum in each of the rows 
must be iV(iV3 + l ) / 2 . The square array in any plane parallel to 
a face of the cube forms a magic square according to the more 
general definition of a magic square as one in which the sum in 
each row and column is the same even if the numbers involved 
are other than the numbers from 1 to N2 inclusive. 

2. Transformations. We will call the square array in any plane 
parallel to a face of the cube a slab. I t is clear that any permuta­
tion of a set of parallel slabs among themselves will not affect 
the magic property of a magic cube. There are manifestly (iV!)3 

of these permutations, and by means of them we can bring any 
element into any desired cell of the cube. In particular we can 
bring the element Nz to the origin, and after that we can, by a 
further permutation of the slabs, arrange the elements which lie 
on the three axes so that they read in descending order of magni­
tude from the origin out. 

Again, by a rotation of the cube through an angle of 120° 
about the diagonal through the origin, we may make a cyclic 
permutation of the three axes. We may then assume that the 
element next to the origin on the x axis is larger than either of 
those next to the origin on the other two axes. Further, by a 
reflection of the whole cube in the xy plane followed by a rota­
tion about the x axis of 90°, we may interchange the elements 
of the y and z axes without disturbing those on the x axis. We 
may then assume that the element next to the origin on the 
y axis is larger than that next to the origin on the z axis. We 
then define a normal cube as one which has the element Nz at 
the origin with the elements on the three axes arranged in de­
scending order of magnitude from the origin out, and also such 

* Presented to the Society, June 20, 1934. 
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that the elements next to the origin are in descending order of 
magnitude reading from the x to the y to the z axis in order. 
There is one and only one normalized cube obtainable from a 
given cube by the above 2-3-(iV!)3 transformations. The total 
number of different magic cubes of order N is therefore equal to 
the number of normalized cubes of that order multiplied by 
6(N\)\ 

3. Magic Cubes of Order Three. There are no cubes of order 2. 
The magic sum would be 9 and, the largest element being 8, only 
the element 1 could lie in the same row with it. For the magic 
cube of order 3 the magic sum is 42 and the other elements on 
the axes beside the element 27 must add to IS. There are 7 pairs 
of elements available for the axes: (14, 1) (13, 2) (12, 3) (11, 4) 
(10, 5) (9, 6) (8, 7). From these we may obtain 35 different 
types of cubes as follows : 

x axis 
(14,1) 
(14, 1) 
(i4, i; 
(14, 1) 
(14,1) 

(13,2) 
(13,2) 
(13,2) 
(13,2) 

(12,3) 
(12,3) 
(12,3) 

(11,4) 
(11,4) 

y axis 
(13,2) 
(12,3) 
(11,4) 
(10,5) 
(9,6) 

(12,3) 
(11,4) 
(10,5) 
(9,6) 

(11,4) 
(10,5) 
(9,6) 

(10,5) 
(9,6) 

z axis 
(12, 3), (11,4), (10, 5), (9, 6) (8,7) 
(11, 4), (10, 5), (9, 6), (8, 7) 
(10, 5), (9, 6), (8, 7) 
(9, 6), (8, 7) 
(8,7) 

(11, 4), (10, 5), (9, 6), (8, 7) 
(10, 5), (9, 6), (8, 7) 
(9, 6), (8, 7) 
(8,7) 

(10, 5), (9, 6), (8, 7) 
(9, 6), (8, 7) 
(8,7) 

(9, 6), (8, 7) 
(8,7) 

(10,5) (9,6) (8,7) 

To exhibit the method of examining each of these 35 cases 
for possible magic cubes we give in detail the examination for 
the second case where the entries along the three axes are in 
order: (14, 1), (13, 2) and (11,4). We first list the possible slabs 
in the xy plane which have for their top line the entries 27, 14, 1 
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and for the left-hand column the entries 27, 13, 2. These are 
got by assigning successive available elements for the center ele­
ment, the others being then determined. None of these center 
elements must occur on the three axes, and none must give 
equal elements in the slab. The first condition bars out the num­
bers 1, 2, 4, 11, 13, 14 and 27. Besides this the number 8 can 
not be used as that would give two bottom elements equal to 
20. We get thus the following for the xy plane: 

27 14 1 27 14 1 27 14 1 27 14 1 
13 3 26 13 5 24 13 6 23 13 7 22 
2 25 15 2 23 17 2 22 18 2 21 19 

27 14 1 27 14 1 27 14 1 27 14 1 
13 9 20 13 10 19 13 11 18 13 12 17 
2 19 21 2 18 22 2 17 23 2 16 24 

Similarly we list the possible slabs in the yz plane. They are: 

27 13 2 27 13 2 27 13 2 27 13 2 27 13 2 
11 6 25 11 7 24 11 8 23 11 9 22 11 12 19 
4 23 15 4 22 16 4 21 17 4 20 18 4 17 21 

For the zx plane we also have the following : 

27 14 1 27 14 1 27 14 1 27 14 1 
11 5 26 11 6 25 11 7 24 11 8 23 
4 23 15 4 22 16 4 21 17 4 20 18 

27 14 1 27 14 1 27 14 1 
11 10 21 11 12 19 11 16 15 
4 18 20 4 16 22 4 12 26 

We select now a slab from the xy plane, and a slab from the 
yz plane and a slab from the zx plane, taking care that none of 
the entries (except, of course, those that may lie on the axes) 
be repeated in any two slabs. Starting with the xy slabs in order, 
the first set that appears is 

27 14 1 27 13 2 27 14 1 
13 3 26 11 7 24 11 8 23 

2 25 15 4 22 16 4 20 18 

Given these three slabs and the center of the cube, the rest 
of the elements of the cube are determined. This center element 



S36 D. N. LEHMER [December. 

must again be chosen from the elements not already found in the 
three slabs. Since it lies in line with the three central elements 
of the slabs it is further restricted since the sum of the elements 
in those lines must be 42. Now the only pairs which with 3 will 
give 42 are (26, 13), (25, 14), (24, 15), (23, 16), (22, 17), (21, 18) 
and (20, 19), and neither number in any pair must have been 
used before. But this condition rules out every one of the pairs, 
and so there can be no cube with the above set of slabs in the 
three planes of reference. 

The other sets of three slabs are treated similarly and all are 
ruled out at once except the set : 

27 14 1 27 13 2 27 14 1 
13 3 26 11 9 22 11 7 24 

2 25 15 4 20 18 4 21 17 

Here the central number 3 rules out all the available pairs 
except (23, 16), neither of which numbers appear in any of the 
slabs. When we try these numbers on the central element 7, they 
are still both usable, since 7 and 23 demand 12 and 7 and 16 de­
mand 19 and both of these numbers are still available. But the 
central element 9 of the third slab rulet out the entry 16, since 
9 and 16 demand 17 which is in the third slab already. But the 
number 23 is still left since 9 and 23 determine 10 which is still 
unused. 

We proceed to derive then all the other elements of the cube, 
given the above three slabs and the centra! element 23. The 
result is our first magic cube. We give the three horizontal slabs 
in order from the bottom up : 

27 14 1 11 7 24 4 21 17 
(1) 13 3 26 9 23 10 20 16 6 

2 25 15 22 12 8 18 5 19 

In the same way all of the other cases were examined. Natu­
rally certain short cuts appeared to abridge the work. The ex­
aminations were made three times, and in the third the cubes 
were normalized by putting the element 1 in the corner of the 
cube and arranging the elements on the three axes in ascending 
order out from the origin. Three and only three other cubes were 
obtained. The others are: 
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27 14 1 10 9 23 5 19 18 
(2) 13 3 26 8 22 12 21 17 4 

2 25 IS 24 11 7 16 6 20 

27 14 1 10 9 23 S 19 18 
(3) 11 7 24 6 20 16 25 15 2 

4 21 17 26 13 3 12 8 22 

27 13 2 10 8 24 5 21 16 
(4) 11 9 22 6 19 17 25 14 3 

4 20 18 26 15 1 12 7 23 

Each of these normalized cubes represents a group of 1296, 
so that there are altogether 5,184 magic cubes of order 3. 

T H E UNIVERSITY OF CALIFORNIA 

EXTENSION OF RANGE OF FUNCTIONS* 
BY E. J. McSHANE 

A well known and important theorem of analysis states that 
a function f(x) which is continuous on a bounded closed set E 
can be extended to the entire space, preserving its continuity. 
Let us consider a metric space S and a function f(x) defined and 
possessing a property P on a subset E of S. We shall for the 
sake of brevity say that ƒ (x) can be extended to S preserving prop­
erty P , if there exists a function 4>(x), defined and possessing 
property P on all of S, which is equal to f(x) for all x on E. Our 
present object is to establish an easily proved theorem which 
both includes the classical theorem stated above, and also 
shows that functions satisfying a Lipschitz or Holder condition 
on an arbitrary set E can be extended to 5 preserving the 
Lipschitz or Holder condition. An advantage of the present 
procedure is that it yields an explicit formula for the extension, f 

* Presented to the Society, June 20, 1934. 
f After this paper was submitted for publication, the author found that 

Hassler Whitney had already indicated a simple proof that a function continu­
ous on a bounded closed set can be extended to be continuous on all space, the 
method of extension being almost identical with the present one. (H. Whitney, 
Transactions of this Society, vol. 36 (1934), footnote on p. 63). 


