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ON T H E M I N I M I Z I N G PROPERTY OF T H E 
HARMONIC FUNCTION 

BY E. J. MCSHANE 

1. Introduction. Let D be a bounded connected open set and 
D* its boundary and let D=D+D*. I t is well known f that if 
the function u(x, y) be harmonic on D, then u(xt y) minimizes 
the Dirichlet integral 

Ilf]=ff\f2+ft]dxdy 

in the class of all functions ƒ (x, y) possessing piecewise continu­
ous partial derivatives ƒ * and fy and coinciding with u(x, y) on 
the boundary Z)*. But in certain recent discussions of the prob­
lem of Plateau J essential use is made of a generalization of this 
theorem; it was necessary to know that the harmonic function 
nix, y) minimizes l[f] in a larger class of functions than those 
with continuous derivatives. I t has been suggested that a proof 
of this fact should be published ; the present note carries out the 
suggestion. The method of proof is similar to that due to 
Lebesgue. As an application, a theorem is proved which is of 
some interest in the theory of curved surfaces. 

The functions with which we shall be concerned are those 
which are, as we shall say, absolutely continuous by sections (ab­
breviated a.c.s.). A function v(x> y), defined and continuous on a 
bounded open set D, will be said to be a.c.s. on D if it satisfies 
the following conditions : 

(1 a) for almost all values y0 of y the function v(x, yQ) is absolutely 
continuous on each interval of the line y=yo lying in D\ 

( l b ) for almost all values x0 of x it is absolutely continuous on each 
interval of the line x = XQ lying in D. 

t H. Lebesgue, Société Mathématique de France, Comptes Rendus, (1913), 
p. 48. Hurwitz-Courant, Funktionentheorie, 2d éd., p. 424. 

| E. J. McShane, Parametrizations of saddle surfaces, etc., Transactions of 
this Society, vol. 35 (1933), pp. 716-733. T. Radó, The problem of Plateau, 
vol. II, No. 3, of the Ergebnisse der Mathematik und ihre Grenzgebiete, p. 99. 



594 E. J. MCSHANE [August, 

With this terminology we state our theorem on the minimiz­
ing property of the harmonic function. 

THEOREM 1. If (a) u is continuous on T) and harmonic on D, 
(b) v is continuous on D and a.c.s. on D, (c) v(x, y) =u(x, y) on 
D*, then I[v]^I[u], the sign of equality holding only if I [u ] = 00 
or v = u. 

Before proceeding to the proof of the theorem, we first ob­
serve that if fix, y) be a.c.s. on D, its derivatives vx and vy are 
defined almost everywhere on D and are measurable where de­
fined. Where they are undefined, we assign them the value 0. 
We shall denote by X the set of all values XQ of x such that (a) 
the line x = x0 has points in common with Z), (b) on each interval 
of the line X — XQ lying in D the function v(xo, y) is absolutely 
continuous in y. The set Y is defined analogously. For each xQ 

of X the line x — #0 has in common with D a finite or denumera-
ble set of intervals; these we denote by 5i(#o), £2(^0) > • • • . The 
intervals ôi(y0) are analogously defined. As a first step in the 
proof of Theorem 1 we establish the following lemma. 

LEMMA. If u(x, y) is harmonic on an open set containing D, 
and v is continuous on D and a.c.s. on D, and v(x, y) = u(x, y) on 
D*, then I[v]^l[u]. 

If l[v] = <x>, the conclusion holds. Otherwise let us define 

4>(x, y)=v(x,y)-u(x,y). 

This function is continuous on D and a.c.s. on D, and 

(1) I[v] = / [ * ] + / [ * ] + 2JJ(ux<l>x + uy<t>v)dxdy; 

here all integrals are well defined and finite. We may write 

I I uz<j>xdxdy = I < I ux(/)xdx>dy 

= I \ J2 I ux(j)xdx>dy. 

In the last integral we integrate by parts, remembering that <t> 
vanishes a t each end of each ô»(y). We thus obtain 
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I I ux<j>xdxdy = - N 2 uxx<f>dx\dy 
J J D J Y \ J 6i(y) / 

(2) 

-ƒƒ; uxx<j)dxdy; 

the last reduction is allowable because uxx and 0 are both con­
tinuous and bounded on D. In a like manner, 

I I Uy<t>ydxdy = — I I uyy<l)dx dy. 

Adding and remembering that u is harmonic, we find that the 
last integral of equation (1) vanishes. Since l[4>] ^ 0 , the lemma 
is established. 

Proceeding to the proof of the theorem, we subdivide D into 
the sets D0, D', D", on which the respective relations v — ut 

v>u, v<u hold. Also, for every e > 0 , we define DJ and De" to 
be the subsets of D on which v>u + e and v < u — e, respectively. 
The Dirichlet integrals over these sets will be distinguished by 
the corresponding affixes; for example, IJ(u) is the integral of 
ux

2 +uy
2 over D/. 

We first observe that Io [v] = I0 [u] ; in fact, ux = vx and uv — vv 

for almost all points of D0. For let E be the set on which 
u — v = 0, the derivatives ux and vx are defined, and ux — vx9^0. 
This set is measurable; hence to prove that its measure is zero, 
we need only show that for almost all 3̂0 the part of E lying on 
the line 3̂ =3̂ 0 has linear measure zero. But for every y$ the 
points of E belonging to the line y = yo form an isolated set and 
so are enumerable; for at each such point we have «—?> = 0, 
while d{u—v)Jdx exists and is not zero. Therefore m{E) =0 . 

As e tends to 0, the sets D/, D" tend to D', D", respectively; 
hence IJ [u]—>I'[u] and It

n[u\-^I"\u1[. Thus if h be any num­
ber less than l[u], we can choose e small enough so that 
Ie'[u]+I€"[u]+I0[u]>h. The set D< lies, with its boundary 
Dt'*, in D) and on D/* we have v — e = u. Hence by our lemma 
lS[v]=IS[v-e]^Iê'[u], and similarly I."[v]^I."[u\. Thus 

I[v] ^ h[v] + II [v] + / . " [v] ^ I0[u] + II [u] + II' [u] > h. 

This being true for every h<l[u], it follows that i"[fl] §£/[«], 
as was to be proved. 
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It remains to be shown that if l[u] is finite and l[v] =l\u], 
then v = u. In this case we consider the function 

I[u + \<t>] = I[u] + \2l[cf>] + 2\ f f (ux<j>x + uy<j)y)d% dy, 

where cj>=v — u. On setting X = l, we find that the last integral 
on the right has the value —I[</>]/2. Setting X = 1/2, the equa­
tion becomes l[u+<t>/2]=l[u]-l[(t>]/4. Therefore, if l[<t>]>0, 
the a.c.s. function u+4>/2 has a Dirichlet integral less than that 
of u, which we have already shown impossible; hence l[(j>] = 0. 
This implies that 4>x = 0 almost everywhere in D. Thus for al­
most all 3>o of Y the equation <t>x(x, y$) = 0 holds for almost all x 
in ^8i(yo) ; integrating and remembering that <j> = 0 at the ends 
of each S»(yo), we find <£(x, y)=0 for almost all (x, y) in D. 
Since <j> is continuous, c^ — u—v vanishes identically on D, com­
pleting the proof of the theorem. 

2. Discussion of a.c.s. Functions. As yet we have not shown 
that the class of a.c.s. functions includes the class of functions 
with piecewise continuous derivatives and finite Dirichlet in­
tegral. Suppose, then, that v{x, y) and its derivatives vx and vy 

are continuous on Z>, and l[v] is finite; we state that v is a.c.s. 
For the finiteness of l[v] implies that \vx(x, yo)\ is summable 
over X ^ ' ^ o ) f ° r almost all 3>o. Since vx is continuous in D, v is 
absolutely continuous over every closed interval contained in 
St(^o) ; and this, with the summability of vx(x, yo)> implies that v 
is absolutely continuous on 8i(yo). A like argument applies to 
v(xo, y) for almost all x0. In particular, if u(x, y) is harmonic on 
D and l[u] is finite, then u(x, y) is a.c.s. 

If v is continuous on D and l[v] is finite, and D can be sub­
divided into a finite number of subsets, each bounded by a finite 
number of rectifiable simple arcs such that vx and vy are con­
tinuous on the interior of each subset, then v is a.c.s. For, if we 
except a set of x0 of measure zero, the line X = XQ intersects the 
boundary curves in a finite number of points, so that each ôi(x0) 
is subdivided into a finite number of sub-intervals. Again ex­
cept on a set of measure zero, the function V(XQ, y) is absolutely 
continuous on each of these subintervals by the preceding para­
graph, and being also continuous on S;(x0) it must be absolutely 
continuous on St-(#o). A like argument holds for almost all ^o. 
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3. Invariance Properties. The definition of the property a.c.s. 
seems highly artificial, since it is stated in terms of a particular 
coordinate system and has no self-evident invariance properties 
even under rotations of the axes. But this defect is only appar­
ent; in fact, we shall now apply Theorem 1 to show that if a 
function is a.c.s. and has a finite Dirichlet integral, it retains 
these properties under all conformai transformations, the 
Dirichlet integral being unchanged in value. We shall prove the 
following theorem. 

THEOREM 2. Let the transformation 

(3) x = x(x', ƒ ) , y = y(x', y') 

map the hounded open set D' conformally on the hounded open set 
D and map D' topologically on D, and let the f unction v'(x'j y') 
he a.c.s. on D' and have a finite Dirichlet integral 

ƒ'[„'] a ff[v'l + /y, ]dx'dy'. 

Then its transform v(x, y) = v'(x'(x, y), y'(x, y)) is continuous on 
B and a.c.s. on D, and l[v]~I'[v']. 

By drawing lines parallel to the x- and y-axes we subdivide 
the (xy y) -plane into squares of side 2~n, where n is an arbitrary 
positive integer. We obtain the (w+l ) th subdivision by sub­
dividing each square of the nth. Those squares which are (with 
their boundaries) interior to D we call q\, g2, • • * , qm; the re­
mainder of D is a set r, bounded in part by D* and in part by 
line segments. In the q, and in r we construct the harmonic 
functions which coincide with v(x, y) on the boundaries of the 
subsets. Thus we have defined a function un(x1 y) which is con­
tinuous on D and harmonic on the interiors of the q3- and r. 
The transformation (3) carries r, qi, q?,, • • • , qm into subsets of 
D'', which we call r', g/, g2', • • • , qJ, respectively; and it car­
ries un

r into a function un'(x'', y') which is continuous on D' and 
harmonic on the interior of each g ƒ and r' and which coincides 
with v' on the boundary of each subset. Hence, by Theorem 1, 
the Dirichlet integral of vn

f over each subset is at most equal 
to the Dirichlet integral of u' over that set, so on adding these 
integrals we have If[un

f]^If[vf]. But in each set qi, r, the map-
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ping (3) leaves the Dirichlet integral of the harmonie function u 
unchanged; hence l[un] =I'[un ] ^If[v']. Let us consider a 
point (xo, y o) of D. For all sufficiently large n, it belongs to some 
square, say g^n), of the nth subdivision. Since the diameters of 
the squares approach zero, the greatest and least of the values 
of v(x, y) on the boundary of gt(n) tend to v(xQl yQ) ; and since un 

is harmonic on the square, the value un(x0, yo) lies between 
these two extreme values of v, so that lim un(x, y) =v(x,y) at 
each point of D. This equation continues to hold on Z)*, where 
every un coincides with v. Finally, by §2, each un(x, y) is a.c.s. 
on D. 

We are now in a position to repeat the demonstration on 
pages 719-720 of my previously cited paper; we need only re­
place the word "uniformly" by "everywhere" and replace the 
interated integrals taken first with respect to v between 
— (1 — u2)112 and (1 — u2)112 and then with respect to v over CE, 
by iterated integrals taken first over XX-(#) and then over X. 
We thus find that v(x, y) is a.c.s., and that 

l[v] ^ lim inf l[un] = lim inf î'[ui ] S I'[v']. 

Interchanging the roles of v and v' shows that I ' [V]g l [ z j ] ; 
hence the Dirichlet integrals are equal, and the theorem is es­
tablished. This theorem has an application in the theory of 
curved surfaces. Among all continuous surfaces 

x = x(u, v), y = y(u, v), z = z(u, v), ((«, v) on B), 

where B is a Jordan region, a particularly interesting class is 
that for which 

(a) the functions x(u, v), y{u, v), z(u, v) are a.c.s. on B, 
(j8) E+G is summable, that is, l[x], l[y], l[z] are finite. 

In particular, if the region B can be taken to be a circle, a and j8 
remaining satisfied, we say (with Morrey) that the surface is of 
type L2. I t is clearly more convenient to have a circle to deal 
with than to have a general Jordan region. But we can now show 
tha t every surface having a representation satisfying (a), (|3) is 
of type L2. We need only map B conformally on the unit circle; 
the transformed functions x(u, v), y(u, v), z(u, v), w2+z>2^l, 
then satisfy (a) and (]8) because of Theorem 2. 
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