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DYNAMICAL TRAJECTORIES AND CURVATURE 
TRAJECTORIES* 

BY EDWARD KASNER 

1. Introduction. In this paper we compare two important 
types of triply infinite families of plane curves, dynamical fam­
ilies and curvature families. Both types are projectively invari­
ant, so that our subject belongs to the projective differential 
geometry of systems of curves. 

A family of dynamical trajectories consists of the °o3 possible 
paths of a particle moving in a general field of force, initial 
position and velocity being arbitrary. If <£(#, y) and \[/(x, y) are 
the components of force, the equations of motion are 

(10 x = $(%, y), y = }p(x, y). 

The differential equation of the trajectoriesf is found by elimi­
nating the time from (1') : 

(1) (+ - y'4>)y'" = {*, + tyy - <t>x)y' - * „ / * } / ' - 3*/'*. 

To define curvature trajectories we start with an arbitrary 
doubly infinite family of curves, that is, a general differential 
equation of second order : 

(2') y" =F(x,y,y'). 

A curvature trajectory of this family is a curve which is drawn so 
as to have at each point c times the curvature of the member of 
the family to which it is tangent at that point, c remaining 
constant along the trajectory. For a given value of c there will 
be a set of oo2 trajectories, (one in each direction through each 
point). By varying c we obtain oo l such sets. Hence a given 
doubly infinite family (2') generates a triply infinite family of 
curvature trajectories. 

* Presented to the Society, April 26, 1919, under the title A characteristic 
property of central forces. See abstract, this Bulletin, vol. 25 (1919), p. 443. 

t E. Kasner, The trajectories of dynamics, Transactions of this Society, 
vol. 7 (1906), pp. 401-424. Also Differential-Geometric Aspects of Dynamics, 
Princeton Colloquium Lectures on Mathematics, 1913, especially Chapters 1 
and 3, where some of the properties are stated in projective language. A new 
edition, published by this Society, has just appeared. 
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The oo2 trajectories that can be drawn for a fixed value of the 
curvature ratio c satisfy the equation y" = cF(x, y, y'), (since 
curvature at a given direction element is proportional to y"). 
If we differentiate this and eliminate the parameter c, we have 
the differential equation of all the curvature trajectories of 
(20: 

(2) Fy"f = (Fx + Fyy')y" + Fy>y"K 

Thus a two-parameter family of curves gives rise by a ge­
ometrical construction to co3 curvature trajectories, just as for 
instance a one-parameter family gives rise to oo2 isogonal trajec­
tories.* As a simple example, the original family (2') might be 
the oo2 unit circles. Then it is easy to see from the definition 
that their curvature trajectories would be all the oo3 circles of 
the plane. 

We have discussed the projective character of dynamical 
families in the references. The concept of curvature families in­
volves also a projective concept. This is an immediate conse­
quence of Mehmke's theorem, which states that if two curves 
are tangent at a point, the ratio of curvatures is a projective in­
variant. In fact this theorem implies that the entire process of 
construction of curvature trajectories has projective meaning. 

Now we observe that (1) and (2) are both of the general form 

(3) y"' = G(x, y, y')y" + H(x, y, y')y"\ 

but with different functions G and H. This resemblance between 
the equations suggests the problem of determining all triply in­
finite families of curves which are at once dynamical trajectories 
and curvature trajectories.^ 

The answer is interesting and physically significant. The com­
mon families are exactly the trajectories of all central fields of force. 
For the curvature families this means that (2') takes one of the 
special forms (12i) or (122) below. 

* The special case of orthogonal trajectories has an analog in curvature-
reversing trajectories (curvature ratio c= —1, or F " = —y"). In either case the 
square of the operation of taking trajectories is the identity, so the relation is 
involutorial. 

t We assume that the field in (1') is not null, and that F in (2') is not identi­
cally zero ; these degenerate cases give merely the oo2 straight lines and so cor­
respond to each other. 
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The result amounts to a new geometrical characterization of 
the trajectories of central fields. They are those families of 
dynamical trajectories whose <*>3 curves can be analyzed into a 
series of sets, each set containing QO 2 curves, in such a way that 
one of the sets will generate the others by the simple process of 
multiplication of curvatures described above. 

We observe that this analysis of the trajectories of a central 
field also has physical meaning. I t can be shown to be identical 
with the grouping based on the value of the area-sweeping con­
stant, (or on the constant of angular momentum). 

2. Geometric Properties of Dynamical Families. For the proof, 
we employ the following sets of geometric properties, which 
characterize dynamical families among all triply infinite fami­
lies of curves (see references). 

I. If to each of the oo1 curves having a given lineal element 
in common the osculating parabola is drawn at that element, the 
foci will lie on a circle through the point of the element. 

II. There exists for each point (x, y) of the plane a certain 
direction co (that of the force) such that the angle between 
this direction and the tangent to the focal circle corresponding 
to any element (x, y, y') at the given point is bisected by that 
element. 

I I I . The locus of the centers of the 001 circles corresponding 
to the lineal elements at a given point is a conic with that point 
as a focus. 

IV. In each direction through a given point 0 there passes 
one trajectory which has contact of third order with its circle 
of curvature. The locus of the centers of the 001 hyperosculating 
circles, obtained by varying the initial direction, is a conic 
passing through the given point in the direction of the force. 
(But III and IV are equivalent.) 

V. Of the curves which pass through a given point in the 
direction of the force at that point, there is one which has 
contact of the third order with its circle of curvature ; the radius 
of curvature of this curve is three times the radius of curvature 
of the line of force (that is, integral curve of the direction as­
signed to each point by II) passing through the given point. 

VI. When the point 0 is moved, the associated conic de­
scribed in property IV changes in the following manner. Take 
any two fixed perpendicular directions for the x direction and 
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the y direction ; through 0 draw lines in these directions meeting 
the conic again at A and B, respectively. Also construct the 
normal at O meeting the conic again at N. At A draw a line in 
the y direction meeting this normal in some point A ', and at B 
draw a line in the x direction meeting the normal in some point 
B'. The variation property referred to takes the form 

d 1 d 1 COCO™ — COaCOj, 

(4) + + - = 0, 
dx AA' by BB' 3co2 

where A A ' and BBf denote distances between points, and where 
co denotes the slope of the lines of force relative to the chosen x 
direction. This is true for any pair of orthogonal directions, and 
therefore really expresses an intrinsic property of the system of 
curves. (See the diagram in references.) 

We use the analytic forms of these properties, which are as 
follows. 

PROPERTY I. The equation of the family has the form (3), 
y'" = Gy"+Hy"*. 

PROPERTY I I . H=3/[y' —œ(x, y)]. 
PROPERTY I I I , IV. Equation (3) is further specialized to 

(5) ( ƒ - co)/" = (X/2 + /ry' + p)y" + 3y"\ 

where co, X, /*, v are arbitrary functions of x and y. 

(6) PROPERTY V . XCO2 + ^ + v + œx + coco,, = 0 . 

(7) PROPERTY VI. X* + [(? + <ax)/a]v = 0. 

We impose these conditions successively on the class of all 
curvature families, defined by (2), thus arriving at each step at 
a more special subclass for which the properties imposed up to 
that point could be given as defining theorems. Moreover, the 
classification is projective, for the properties I-VI are separately 
projective. 

PROPERTY I. All curvature families have this property, since (2) 
is an equation of type (3). 

PROPERTY II . Fy>/F = 3/(y'-co). Integrating, we find 

(8) F(x, y, y') = [yf - <a(x, y)] u(x, y). 

The f or ce direction co(x, y) and the factor u(x, y) are arbitrary. 
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PROPERTY I I I , IV. Substituting (8) into (2), we get an equa­
tion which already has the form (5) with 

(9) \u = uyy fiu = ux — 3o)yu — o)Uy, vu = — 3ooxu — CJÛUX. 

Hence curvature families with an F as in (8) have properties I, 
II , I I I , IV. 

PROPERTY V. Condition (6) reduces to 

(10) 0)x + OOCOy — 0 . 

This means that the lines of force y'=oi(x, y) must be a one-
parameter family of straight lines. 

PROPERTY VI. Condition (7) becomes 

(11) («,/«)„ = 0. 

From (11) and (10), a% = 0, so that o) is linear in y. We deduce 
finally that either œ=y/x (if we translate the axes) or œ = k 
(const.). Hence if curvature trajectories are also dynamical 
trajectories, the generating family (2') must be either 

First case: y" = (yr — y/x)zu(x, y) 
or 

Second case: y" = ( ƒ — k)su(x, y). 

If we calculate (2) for these special F's and compare it with (1), 
we find in the first case that \f//cl>=y/x (proving that the field 
is central) and <j> = u/x2. The equation of the generating family 
(2r) may be rewritten more symmetrically 

(12i) y" = ( * / - y)h(x, y), 
with v arbitrary. The components of the corresponding field are 
<j)=xv and \p = yv. In the second case, \f//(j> = k, so that the field 
is parallel (center at infinity), and <j> — u. If we take the field 
horizontal, the equation of the generating family (2') becomes 

(12,) y" = y'h{x, y), 

with v arbitrary. The components of the field are <f> =v and \p = 0. 
We have thus proved the following theorem. 

THEOREM. A family of dynamical trajectories due to a posi­
tional field of force is resolvable into curvature trajectories when and 
only when the field is central or parallel. The base doubly-infinite 
family is then of the f or m (12i) or (122). 

3. Families Derived from Conical Surfaces. In a paper analo-
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gous to the present one we compared dynamical trajectories and 
sectional families.* A sectional family is defined by taking all the 
oo 3 plane sections of an arbitrary surface and projecting them 
from some fixed center on to a fixed plane. We found that cones 
(of any cross-section) were the only surfaces that produced dy­
namical families. The corresponding fields of force were again 
central (or parallel), but of a special kind, the force following 
an inverse square law along any line of force (the constant being 
allowed to vary for different lines). The Newtonian field was in­
cluded as a special solution, the cone then being a right circular 
cone. 

We are now able to conclude that these same families (sectional 
families derived from conical surfaces) are distinguished by being 
the largest class which are of dynamical, sectional, and curvature 
types all at once. 

4. Comparison of Sectional and Curvature Types. Finally, we 
might compare the sectional and curvature types with each 
other. We already know that they have in common the families 
projected from general cones. To these we can add the family 
of all circles mentioned above as an example of curvature tra­
jectories, for stereographic projection of the sphere gives the 
same circles. But with the sphere we have at once all proper 
quadrics, provided the center of projection is taken on the sur­
face; this follows from the projective character of the work. 
We can remove the restriction as to the center of projection by 
another example: orthogonal projection of the plane sections of 
a sphere gives a family of oo3 ellipses all contained in a circle ; 
oo2 of these are tangent to the circle at one end of their minor 
axes ; these oo 2 have the whole family for their curvature tra­
jectories. Thus the sectional families from quadrics and general 
cones are also curvature trajectories. I t can be shown that this 
is the full answer, f 

5. Overlapping of the Three Types. We thus have complete 
knowledge of the possible overlapping of the dynamical, sectional, 

* E. Kasner, Dynamical trajectories and the oo3 plane sections of a surface, 
Proceedings of the National Academy of Sciences, vol. 17 (1931), pp. 370-
376. Again, sectional families are protectively invariant and they have differ­
ential equations of the form (3). 

t This result is due to G. Comenetz. Another proof has been given by M 
Halperin. 
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and curvature types of triply infinite families of curves. The re-
results are summarized in the following table; the two types 
compared are named in the left-hand column ; their intersection 
is identified in the center; and the number, that is, the infini­
tude, of (protectively different) common families is given at the 
right. 

Dynamical Sectional: Special central fields or oo/0> 
General cones 

Dynamical Curvature: Any central field oo/(2> 
Sectional Curvature : General cones and 

Quadric surfaces ooA1)*2 

The 2 in the exponent of °o refers of course to two arbitrary 
constants, while (according to a notation which I proposed in 
this Bulletin in 1912, in a review of Riquier's treatise on partial 
differential equations) / ( l ) means an arbitrary function of one 
independent variable, and /(2) an arbitrary function of two 
independent variables. 

COLUMBIA UNIVERSITY 

ON NEVANLINNA'S WEAK SUMMATION METHODf 

BY A. F. MOURSUND 

1. Introduction. Our principal object in this note is to dis­
cuss the function 

Pn(fi) = - fr \f 0(iogcy(i - O-KiogC/a - *» 
7T J 0 I J 0 

sin {Int +1)5* 
X ; dt 

sm s 

ds, 

which, for (3>0 and the "dummy" constant C^e**1, plays a 
role in the theory of summation of Fourier series by Nevan-
linna's weak methodj analogous to the role the Lebesgue 
constants 

t Presented to the Society, June 20, 1934. 
Î F . Nevanlinna, Über die Summation der Fourier1 schen Reihen und Inte­

grale, Översikt av Finska Vetenskaps-Societetens Förhandlingar, vol. 64 
(1921-22), A, No. 3, 14 pp. A. F . Moursund, On the Nevanlinna and Bosanquet-
Linfoot summation methods, Annals of Mathematics, (2), to appear. 


