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A NOTE ON T H E JACOBI CONDITION FOR 
PARAMETRIC PROBLEMS IN T H E CALCULUS 

OF VARIATIONS* 

BY M. R. HESTENES 

1. Introduction. An elegant treatment of the Jacobi condition 
for parametric problems in {yx • • • yn) -space has been given by 
Bliss, f He defines conjugate points in terms of solutions rji of 
the Jacobi equations which satisfy the relations yl rji — 0. With 
the help of these solutions he establishes criteria for conjugate 
points in terms of the general solutions of the Jacobi equations. 
Since there are but 2n — 2 linearly independent solutions 77»• satis­
fying the conditions y/r]i — 0, the treatment given by Bliss is 
quite different from that usually given for non-parametric prob­
lems. I t is well known that the methods of Bliss are still applica­
ble if the equation yl rji = 0 is replaced by an equation such as 
yl t\ï = 0, yl rjl = constant, and others. J In the present paper we 
use the equation ylrjl = constant in defining conjugate points 
and obtain the same results as Bliss. The method used is, how­
ever, quite different from tha t of Bliss and has the advantage 
that it is almost identical with that usually given for the non-
parametric problems. This follows because there are In linearly 
independent solutions of the type considered in this paper. Other 
equations for which the method here used is still applicable are 
also discussed. 

2. The Necessary Condition of Jacobi. The problem to be con­
sidered is that of minimizing an integral 

1 = f V(yi, • • • ,yn, yl, • • •, yi)dt = f '/(y, y')dt 

* Presented to the Society, June 23, 1933. 
t Bliss, Jacobi's condition for problems of the calculus of variations in para­

metric form, Transactions of this Society, vol. 17 (1916), pp. 195-206. 
% Graves, Discontinuous solutions in space problems of the calculus of varia­

tions, American Journal of Mathematics, vol. 52 (1930), p. 17. See also Wren, 
A new theory of parametric problems in the calculus of variations, Contributions 
to the Calculus of Variations, 1930, The University of Chicago Press, pp. 175-
185. 
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in a class of arcs yi~yi(t), (h^t^k; ^ = 1, • • • , n), which join 
two fixed points 1 and 2 in (yi • • • yn)-space. The hypotheses 
upon which our analysis is based are those of Bliss.* The nota­
tions are also those of Bliss except that we use the tensor analy­
sis summation convention instead of matrix notation. 

A non-singular arc is one whose determinant 

JVÏVk' Ji 

\ yi 0 I 

is different from zero at each element (y, y') on it A non-singu­
lar minimizing arc £12 without corners is always an extremal 
arc. Moreover, the parameter t can be chosen so that the func­
tions yi(i) defining £12 have continuous third derivatives, f 

We define a function 2co(£, 77, 77') to be the function fi(rç, 77') 
used by Bliss. Along a non-singular minimizing arc En without 
corners the second variation of the integral ƒ is expressible in 
the form 

2w(/, 77, Y}')dt, 
*i 

and this expression must be ^ 0 for every set of admissible va­
riations rji(t) which vanish at t\ and fc. 

The Jacobi equations are the equations 

Ji(l) = (d/dt)œVi> — co,. = 0. 

They satisfy the relations y I Ji(rj) = 0 and hence are not in­
dependent. They are satisfied identically by the functions 
fniz=p{f)y!, where p(t) is an arbitrary function possessing con­
tinuous first derivatives. % 

A special solution rji of the Jacobi equations is defined to be 
one which satisfies identically the equations y( 77/ = constant. 
Every special solution satisfies with X = 0 the equations 

(1) Jt(ri) + \yl = 0, yiii' + yi'til = 0. 

Conversely every solution 77;, X of these equations has y/rj/ 
= constant, and X = 0 on account of the relations y/ Ji(y])^0y 

* Loc. cit., p. 196. 
t Bliss, loc. cit., pp. 197-198. 
t Bliss, loc. cit., p. 201. 
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and hence the functions rji define special solutions of the Jacobi 
equations. Since £ i 2 is non-singular, equations (1) can be solved 
for the variables rj", X. In the solutions the values for X and 
rji' have the form X = 0, since y/ Ji(rj) =0, and 

(2) rj[' = Aik(t)r)k + Bik(t)rjk'. 

A solution rji of the Jacobi equations is therefore a special solu­
tion if and only if it also satisfies equations (2). The usual exist­
ence theorems for differential equations now tell us that through 
each element (to, rjio, Vio) there passes one and only one special 
solution rji. Hence there exist 2n linearly independent special 
solutions. 

A point 3 is said to be conjugate to the point 1 on En if there 
exists a special solution rji = Ui of the Jacobi equations whose 
functions Ui(t) vanish at h and tz but are not identically zero 
on hh. With this definition in mind the following necessary con­
dition can be proved readily by the methods of Bliss.* 

THEOREM 1. T H E NECESSARY CONDITION OF JACOBI. On a 

non-singular minimizing arc £12 without corners there can be no 
point 3 conjugate to 1 between 1 and 2. 

In the proof of this theorem it is found by the methods of 
Bliss that if there were a special solution U{ defining a point 3 
conjugate to 1 between 1 and 2 on Ei2, then this solution would 
take the values W; = 0, u/ =cyl at t = h. There is but one special 
solution taking these values at t = h, namely, the solution 
Ui = (l)'(a(l)+b)yi , where a<£'2(/3) =£, b= — a</>(/3), and 

(3) *(0 = C dt/(ylyi'yi\ 

as is readily verified by substitution. This solution, however, van­
ishes at / = h only in case a = b = c = 0, that is, only in case Ui = 0. 
It follows that there can be no point 3 conjugate to 1 between 
1 and 2 on £12, as was to be proved. 

3. The Determination of Conjugate Points, Let £12 be a non-
singular extremal arc whose parameter / has been chosen so that 
the functions yi(t) defining £ i 2 have continuous third derivatives. 

* Loc. cit., p. 200. 
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LEMMA 1. A set of 2n special solutions Ui81 (5 = 1, • • • , 2n), 
of the Jacobi equations have a determinant 

(4) 
Un(t) 

Uis (t) 

which is either identically zero or else everywhere different from 
zero. 

This result is a consequence of well known theorems on linear 
homogeneous differential equations of the second order ap­
plied to equations (2). A further consequence of these theorems 
is that every special solution Ui is expressible linearly with con­
stant coefficients in terms of 2n special solutions uis whose de­
terminant (4) is different from zero. The following two lemmas 
can now be established by the usual methods.* 

LEMMA 2. The points 3 conjugate to 1 on En are determined by 
the zeros k^k of the determinant 

ui8(t) 
(5) A(/, h) = 

UiS{h) 

formed for 2n special solutions uis of the Jacobi equations whose 
determinant (4) is different from zero. 

LEMMA 3. If the f unctions Uik(t)f(k = l, • • • ,w), define n linearly 
independent special solutions of the Jacobi equations which vanish 
at t = h, then the points 3 conjugate to 1 on Eu are determined by 
the zeros k^h of the determinant \ Uik{t) \. 

We also need the further lemma : 

LEMMA 4. Every solution rji of the Jacobi equations has asso­
ciated with it a two-parameter family of special solutions 

Ui^rji — py/, 

where 

f ylritfdt), (6) p = <t>'(a<t> + b + 

<t>(t) is the function (3), and a, b are arbitrary constants. 

* See, for example, Bliss, The problem of Lagrange in the calculus of varia­
tions, American Journal of Mathematics, vol. 52 (1930), pp. 727-728, 
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This result is readily obtained by solving for p in the equa­
tions 

y lul = ylni — p'ylyi - pyV yl = - a. 

From Lemma 4, with a = o = 0 , it follows that every set of 
2n — 2 solutions Uiq, (<z = l, • • -, 2^ — 2), of the Jacobi equations 
has associated with it a set of 2n — 2 two-parameter families of 
special solutions Viq = Uiq --pqyl . Moreover, the functions 00 'y l , 
<$>'y{, where 0 is the function (3), also define special solutions, 
as is easily seen by substitution. The determinants (4) and (5) 
formed for the 2n special solutions viq, 00'3>/, fiy/ are equal, 
respectively, to 

0'3<W, *(0*W(W*, h), 
where 

y lit) I 
yl'ii) I ' 

o I 

ylih) \' 
Since 0 '>O , the zeros of D(t, h) are identical with those of 
A(t, h). Hence, by the use of Lemmas 1 and 2, we obtain the 
following theorem of Bliss. 

THEOREM 2. The determinant d(t) formed f or 2n — 2 solutions 
Uiq,(q — 1, • - • j2n — 2),of the Jacobi equations is either identically 
zero or else everywhere different from zero. Moreover, the points 3 
conjugate to 1 on En are determined by the zeros h^h of the de­
terminant D(t, h) formed f or 2n — 2 solutions Uiq whose determi­
nant d(t) is different from zero. 

We can also prove the further criterion for conjugate points 
given by Bliss. 

THEOREM 3. If the f unctions Uir(t), (r = l, • • • , n — 1), define 
n — 1 solutions of the Jacobi equations whose matrix 

II uir 0 yl || 
(7) 

II Uil yl yl' II 
has rank n + \ att — h, while the determinant 

D(t) =\uir(t) yl(t)\ 

d(t) = 

Bit, h) = 

uiq(t) 
«ti (t) 
uiq(t) 
Uiq(h) 

0 

ylif) 
y I it) 

0 
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has rank 1 at t = h, then the points 3 conjugate to 1 on En are de­
termined by the zeros h 9e h of D(t). 

In order to prove this we note that since D(h) has rank 1, 
there exist constants cr such that uir — cry/ =0a,tt = h. By taking 
# = 0 and b=cr/<j>'(h) in Lemma 4, it is found that the n — 1 solu­
tions u^ have associated with them n — \ special solutions 
Vir = Uir — pryi such that Pr(k) = cr and hence such that Vir(h) = 0 . 
As above, it is easily seen by substitution that the functions 
Vi=<t>'<t>yi define a special solution having Vi(h) =0 . The n spe­
cial solutions Viry Vi are linearly independent since the matrix 
(7) has rank n + 1. Moreover, the determinant |fl»rï>*| is equal 
to <jxj>fD(t). Its zeros, therefore, coincide with those of D{t) since 
4>'{t) > 0 . The theorem now follows from Lemma 3. 

4. Other Types of Special Solutions. In §§2 and 3 above, the 
equation y/rj/ = constant was used in order to define special 
solutions. We could use instead any equation which is equiva­
lent to one of the form 

yWi' +Ci(t)ril +Di(t)r,i = 0 

and which has a two-parameter family of solutions of the form 
Vi= [api(t)+bp2(t)]yf (/) with the property that for every pair 
of constants (a, 6)5^(0, 0) the expression api+bp2 vanishes at 
most once on the interval under consideration. The equations 
y I rji = at+b and y{ t\l —ay/ y/ , for example, have this property, 
as one readily verifies. 

It is interesting to note that the special solutions used in §§ 
2 and 3 above are closely related to extremal families having 
arc length as their parameter. If the functions 

y% = yi(t, CU • • • , C2n-2) 

define a (2w —2)-parameter family of extremals containing En 
for cq = cq0, (q = 1, • • • , 2n — 2), and having arc length as param­
eter, then along E12 the derivatives yia, y,-6, y%Cq of the func­
tions yi(at+b, cq) form 2n special solutions having the proper­
ties described in Lemmas 1 and 2. In order to prove that these 
derivatives define special solutions one needs only to differ­
entiate the identity y/y/ = a 2 with respect to a, 6, cq and set 
c q

 = cqo. 
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