NOTE ON THE PERIOD OF A MARK IN A FINITE FIELD

BY MORGAN WARD

1. Introduction. If p is a fixed prime, and

$$F(x) = x^{k} - c_{1}x^{k-1} - \cdots - c_{k},$$

where c_1, \dots, c_k are rational integers, is a polynomial which is irreducible modulo p, the period of a mark α associated with the polynomial F(x) in the finite field \mathcal{F} of order p^k is fundamental not only in the theory of finite fields,* but also in many allied arithmetical investigations involving recurring series.†

Our information about the actual value of this period is disappointingly meagre beyond the well known facts that it is a divisor of p^k-1 and that there actually exist polynomials F(x) for which the period equals p^k-1 . I prove here the following additional result.

THEOREM. Let τ denote the period of a mark α associated with the irreducible polynomial F(x) modulo p in the finite field f of order p^k , and let ω be the least positive value of n such that α^n is congruent to a rational integer modulo $p.\ddagger$ Then $\tau = \delta\theta\omega$, where θ is the exponent to which norm α belongs modulo p, while δ is an integer dividing the greatest common divisor of k and p-1, and multiplying the greatest common divisor of θ and the integer $\sigma = (p^k-1)/(\omega(p-1))$.

^{*} See, for example, Dickson, Linear Groups, 1901, Chapters 1-3.

[†] If $\Omega_{n+k}=c_1\Omega_{n+k-1}+\cdots+c_k\Omega_n$ is the difference equation associated with the polynomial F(x), the period of α is the period modulo p of every sequence of rational integers satisfying the difference equation. (See Ward, Transactions of this Society, vol. 35 (1933), pp. 600-628, and the references given there.) The period of α is also the rank of apparition of the prime p for the number $\Delta_n=\pm \operatorname{Res}\{x^n-1,\ F(x)\}$ studied recently by D. H. Lehmer and others. (Annals of Mathematics, (2), vol. 34 (1933), pp. 461-479.)

[‡] In the case k=2, ω is the rank of apparition of the prime p for the Lucas function U_n associated with the polynomial $x^2-c_1x-c_2$ (D. H. Lehmer, Annals of Mathematics, (2), vol. 31 (1930), p. 422). In the general case, ω has been termed the restricted period of F(x) modulo p (R. D. Carmichael, Quarterly Journal of Mathematics, vol. 48 (1920), p. 354).

2. Proof of the Theorem. We write as usual $a \mid b$ for a divides b, and (a, b) for the greatest common divisor of a and b. Denote the roots of F(x) = 0 in the finite field \mathcal{F} by α , α^p , \cdots , $\alpha^{p^{k-1}}$. Then

$$norm \alpha \equiv \alpha^q \ (p),$$

where $q = 1 + p + p^2 + \cdots + p^{k-1}$.

As in the theorem, let ω denote the least positive value of n such that α^n is congruent to a rational integer modulo p. Then every other such n is readily seen to be divisible by ω . In particular,

$$\sigma = q/\omega = (p^k - 1)/(\omega(p - 1))$$

is a rational integer, and

norm
$$\alpha \equiv M^{\sigma}(p)$$
,

where $\alpha^{\omega} \equiv M(p)$, $(1 \leq M \leq p-1)$.

Let λ be the exponent to which M belongs modulo p, θ the exponent to which norm α belongs modulo p, and τ the period of α in \mathcal{F} . Then

$$\tau = \delta\theta\omega,$$

where $\delta = (\lambda, \sigma)$.

For since $\alpha^{\lambda\omega} \equiv M^{\lambda} \equiv 1$ (p), $\tau \mid \lambda\omega$, and since α^{τ} is congruent to a rational integer modulo p, $\omega \mid \tau$. Therefore, $\tau = \nu\omega$, where $\nu \mid \lambda$. Then $\alpha^{\tau} = \alpha^{\nu\omega} \equiv M^{\nu} \equiv 1$ (p), so that $\nu \mid \lambda$. Hence $\nu = \lambda$, $\tau = \lambda\omega$.

Now write $\lambda = \delta \lambda'$, $\sigma = \delta \sigma'$, where $(\lambda, \sigma) = \delta$, $(\lambda', \sigma') = 1$. Then (norm α) $^{\lambda'} \equiv M^{\lambda'\sigma} = M^{\lambda\sigma'} \equiv 1$ (ρ), so that $\theta \mid \lambda'$. Moreover, we have $M^{\theta\sigma} \equiv (\text{norm } \alpha)^{\theta} \equiv 1$ (ρ), so that $\lambda \mid \theta\sigma$, $\lambda'\delta \mid \theta\delta\sigma'$, $\lambda' \mid \theta\sigma'$, $\lambda' \mid \theta$. Therefore $\lambda' = \theta$ and $\lambda = \delta \lambda' = \delta \theta$, $\tau = \lambda \omega = \delta \theta \omega$. Finally,

(2)
$$(\theta, \sigma) | \delta | (k, p-1).$$

For since $\theta | \lambda$, $(\theta, \sigma) | (\lambda, \sigma) = \delta$, and since

$$q = ((p-1+1)^k - 1)/(p-1) \equiv k (p-1),$$

we have (q, p-1) = (k, p-1). Therefore, since $\delta |\lambda| p-1$ and $\delta |\sigma| q, \delta |(q, p-1)$, it follows that $\delta |(k, p-1)$. Equations (1) and (2) give us our theorem.

3. Conclusion. To illustrate the theorem, consider the Fibo-

nacci series 0, 1, 1, 2, 3, 5, 8, 13, \cdots giving the values of the Lucas function U_n associated with the polynomial x^2-x-1 . This polynomial is irreducible modulo 13, so that the period of the Fibonacci series modulo 13 gives the period of the mark α associated with x^2-x-1 in the finite field of order 13. We have $\omega=7$, norm $\alpha=-1$, $\theta=2$, k=2, $\sigma=2$, p-1=12. Hence (2) becomes (2, 2) $|\delta|$ (2, 12), so that $\delta=2$. Hence the period is 28, which is easily verified directly. It seems quite difficult to determine the exact value of δ in all cases.*

CALIFORNIA INSTITUTE OF TECHNOLOGY

ON A PROBLEM OF KNASTER AND ZARANKIEWICZ†

BY I. H. ROBERTS

Knaster and Zarankiewicz have proposed the following problem:‡ "Does every continuum A contain a subcontinuum B such that A-B is connected?" Knaster has shown,§ by an example in 3-space, that the answer is in the negative. In the present paper an example is given of a *plane* continuum M such that every non-degenerate proper subcontinuum of M disconnects M.

The point sets considered in this paper all lie in a plane.

DEFINITION OF $F(C; X, Y; \epsilon)$. Let C be any simple closed curve, X and Y distinct points of C, and ϵ any positive number. There exists a finite set of points $A_1, A_2, \dots, A_n, (n > 2)$, such that (a) $A_1 + A_2 + \dots + A_n$ contains X + Y, (b) A_1, A_2, \dots, A_n lie on C in the order $A_1A_2 \dots A_nA_1$, and (c) A_i and A_{i+1} (subscripts are to be reduced modulo n) are the end points of an arc t_i of diameter $<\epsilon$ which is a subset of C not containing A_{i+2} . There exists a set of mutually exclusive arc segments v_1, v_2, \dots, v_n lying within C such that $v_i + t_i$ is a simple closed curve w_i of diameter $<\epsilon$. Let J denote the simple closed curve

^{*} See the discussion at the close of my paper, Transactions of this Society, vol. 33 (1931), p. 165.

[†] Presented to the Society, December 1, 1933.

[‡] Fundamenta Mathematicae, vol. 8 (1926), Problem 42, p. 376.

[§] B. Knaster, Sur un continu que tout sous-continu divise, Proceedings of the Polish Mathematical Congress, 1929, p. 59.