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NOTE ON THE PERIOD OF A MARK IN
A FINITE FIELD

BY MORGAN WARD

1. Introduction. If p is a fixed prime, and
Fx) = 2* —cix*! — -+ — ¢y,

where ¢, - - -, ¢ are rational integers, is a polynomial which is
irreducible modulo p, the period of a mark « associated with
the polynomial F(x) in the finite field ¥ of order p* is funda-
mental not only in the theory of finite fields,* but also in many
allied arithmetical investigations involving recurring series. {

Our information about the actual value of this period is dis-
appointingly meagre beyond the well known facts that it is a
divisor of p*—1 and that there actually exist polynomials F(x)
for which the period equals p*—1. I prove here the following ad-
ditional result.

THEOREM. Let 7 denote the period of a mark « associated with
the irreducible polynomial F(x) modulo p in the finite field ¥ of
order p*, and let w be the least positive value of n such that a®is
congruent to a rational integer modulo p.{ Then v =2080w, where 0
s the exponent to which norm o belongs modulo p, while d is an
integer dividing the greatest common divisor of k and p—1, and
multiplying the greatest common divisor of 0 and the integer

o=(p*~1)/(w(p—1).

* See, for example, Dickson, Linear Groups, 1901, Chapters 1-3.

T If Quir=c1@nir—1+ * -+ +cin is the difference equation associated with
the polynomial F(x), the period of « is the period modulo p of every sequence
of rational integers satisfying the difference equation. (See Ward, Transactions
of this Society, vol. 35 (1933), pp. 600-628, and the references given there.)
The period of « is also the rank of apparition of the prime p for the number
A,= tRes{x"—l, F(x)} studied recently by D. H. Lehmer and others. (An-
nals of Mathematics, (2), vol. 34 (1933), pp. 461-479.)

1 In the case £ =2, w is the rank of apparition of the prime p for the Lucas
function U, associated with the polynomial ¥ —cix—¢: (D. H. Lehmer, An-
nals of Mathematics, (2), vol. 31 (1930), p. 422). In the general case, w has
been termed the restricted period of F(x) modulo ¢ (R. D. Carmichael, Quar-
terly Journal of Mathematics, vol. 48 (1920), p. 354).
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2. Proof of the T'heorem. We write as usual aI b for a divides b,
and (a, b) for the greatest common divisor of ¢ and 5. Denote
the roots of F(x)=0 in the finite field ¥ by a, a?, - - -, a?*™%,
Then

norma = a? (p),

where g=14p+4p*+ - - - +p* L

As in the theorem, let w denote the least positive value of #
such that a” is congruent to a rational integer modulo p. Then
every other such # is readily seen to be divisible by w. In par-
ticular,

o =-q/w=(p* = 1)/(u(p - 1))
is a rational integer, and
norm a = M° (p),

where av=M (p), 1= M=p-1).
Let N be the exponent to which M belongs modulo p, 0 the

exponent to which norm « belongs modulo p, and 7 the period of
ain % Then

(1) T = 80w,

where 6= (], o).

For since orv=M*=1 (p), TIN», and since o7 is congruent to
a rational integer modulo p, w|'r. Therefore, 7 =vw, where v|)\.
Then ar=a’*=M"=1 (p), so that vl A Hencer =\,7=\w.

Now write N=0\, ¢ =080, where (\, ¢) =6, (\', ¢’) =1. Then
(norm a)M=MNo=M " =1 (p), so that 0[)\’. Moreover, we
have M%=(norm a)*=1 (p), so that 7\|0¢1, )\'6l060", )\’|60’,
M| 6. Therefore M =6 and A =8\ =36, 7=\w =30w. Finally,

) 6,0 8| (& p-1.
For since 8|\, (8, o)| (\, ) =38, and since
g=((p -1+ D"=1/(p-1) =k (-1,

we have (¢, p—1)=(k, p—1). Therefore, since 6]%]1)—1 and
8|a|q, 6[ (¢, p—1), it follows that 6| (k, p—1). Equations (1) and
(2) give us our theorem.

3. Conclusion. To illustrate the theorem, consider the Fibo-
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nacci series 0, 1, 1, 2, 3, 5, 8, 13, - - - giving the values of the
Lucas function U, associated with the polynomial x*—x—1.
This polynomial is irreducible modulo 13, so that the period of
the Fibonacci series modulo 13 gives the period of the mark o
associated with x2—x —1 in the finite field of order 132. We have
w=7, norm a=—1,0=2,k=2,0=2, p—1=12. Hence (2) be-
comes (2, 2) [6[ (2, 12), so that §=2. Hence the period is 28,
which is easily verified directly. It seems quite difficult to de-
termine the exact value of 6 in all cases.*

CALIFORNIA INSTITUTE OF TECHNOLOGY

ON A PROBLEM OF KNASTER AND ZARANKIEWICZ+}
BY J. H. ROBERTS

Knaster and Zarankiewicz have proposed the following prob-
lem:} “Does every continuum A4 contain a subcontinuum B such
that 4 — B is connected?” Knaster has shown,§ by an example in
3-space, that the answer is in the negative. In the present paper
an example is given of a plane continuum M such that every
non-degenerate proper subcontinuum of M disconnects M.

The point sets considered in this paper all lie in a plane.

DEeFINITION OF F(C; X, Y; €¢). Let C be any simple closed
curve, X and Y distinct points of C, and € any positive number.
There exists a finite set of points 4y, 4g, -+ -, 4,4, (8>2), such
that (a) A;+A42+ - - - +A4.contains X+ YV, (b) Ay, As, - - -, 44
lie on Cin the order 4,4, - - - 4,44, and (c) 4;and 4,4 (sub-
scripts are to be reduced modulo #) are the end points of an
arc #; of diameter <e which is a subset of C not containing
A;. There exists a set of mutually exclusive arc segments
v, Ug, + + + , Uy lying within C such that v;44; is a simple closed
curve w; of diameter <e. Let J denote the simple closed curve

* See the discussion at the close of my paper, Transactions of this Society,
vol. 33 (1931), p. 165.

t Presented to the Society, December 1, 1933.

} Fundamenta Mathematicae, vol. 8 (1926), Problem 42, p. 376.

§ B. Knaster, Sur un continu que tout sous-continu divise, Proceedings of the
Polish Mathematical Congress, 1929, p. 59.



