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which, by (16), may be written in the form 

(23) Z(-l)p(!V r^-'> 

and hence is expressible in terms of the Tn directly. 
These results would be useful in determining the systems of 

Appell polynomials generated by a general doubly periodic 
function of the second kind. 
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1. Introduction. A recent study by Clarkson and Adamsf of 
functions ƒ (x, y) of bounded variation naturally leads one to the 
consideration of double Stieltjes integrals. The present paper is 
devoted to the discussion of certain questions concerning such 
integrals. 

Stieltjes defined the symbol 

(1) f f(x)Mx) 
J a 

by means of the sum 

n 

(a = x0 < %i < x2 < - - - < xn = b, Xi-^ ^ £t- ^ Xi). 

If this sum approaches a finite limit when the norm of the sub­
divisions approaches zero, (1) is defined as this limit; otherwise 
(1) is not defined. He showed that for a given </>(x), a sufficient 
condition that (1) should exist for every continuous function 

* Presented to the Society, December 27, 1933. 
t J. A. Clarkson and C. R. Adams, On definitions of bounded variation f or 

functions of two variables, Transactions of this Society, vol. 35 (1933), pp. 824-
854. 
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f(x) is that </>(x) be of bounded variation. Pollard f has shown 
that this condition is also necessary. 

We consider two separate extensions of this notion to func­
tions of two variables. The first is due to Fréchet,$ who gave 
the following definition. Assume that fix, y) and <j>(x, y) are 
defined over the rectangle R{a^x^b, c^y^d); let R be 
divided into rectangular subdivisions, or cells, by the net of 
straight lines x = xif y—yu (a=:xo<xi<X2< • • • <xm = b, 
c—yo<yi<y2< • • • <yn = d); let &, rj3- be any numbers satis­
fying the inequalities 

%i-i ^ & ^ Xi, y j-i ^ VJ ^ y h 

(i = 1, 2, 3, • • • ,m;j = 1, 2, 3, • • • , »); 

and for all i, j let 

Aii0(x», 3;,) = 0(*i_i, yy_i) - *(»<-i, y,-) - </)(xi, y,-_i) + 0 ( ^ , yj). 

Then if the sum 
m,n 

S = Z) ƒ(£<, r?/)An0Ot, yy) 

tends to a finite limit as the norm of the subdivisions approaches 
zero, the integral of ƒ with respect to <j> is said to exist. We call 
this limit the restricted integral, and designate it by the symbol 

I ƒ(*, y)dxdv<l>(x, y). 
a J c 

If in the above formulation 5 is replaced by the sum 

m,n 

where £;/, 17*7 are any numbers satisfying the inequalities 

00i-i ^ {</ ^ a*, y ƒ.1 ^ 77*/ ^ y / , 

(i = 1, 2, 3, • • • , m; j = 1, 2, 3, • • • , »), 

t S. Pollard, The Stieltjes integral and its generalizations, Quarterly Journal 
of Mathematics, vol. 49 (1920), pp. 73-138. 

$ Fréchet, Extension au cas des integrals multiples d'une définition de Vin-
têgrale due à Stieltjes, Nouvelles Annales de Mathématiques, (4), vol. 10 (1910), 
pp. 241-256. 
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we call the limit, when it exists, the unrestricted integral^ and 
designate it by the symbol 

(3) (*) f f f(x,y)dxdy<t>{x,y). 
Ja J c 

Clearly the existence of (3) implies both the existence of (2) 
and its equality to (3) ; on the other hand the existence of (2) 
does not imply the existence of (3), as we shall presently see. 

FréchetJ has shown that a sufficient condition for the exis­
tence of the restricted integral (2) for every continuous inte­
grand is that the integrator function <f>(x, y) be of bounded 
variation in the sense of Vitali§ (we write 0 c V). Of special 
interest in connection with bilinear functional is the case in 
which the integrand is factorable; that is, f(x, y) — g^hiy). In 
this case Fréchet|| has shown that a sufficient condition for the 
existence of the restricted integral (2) for every factorable inte­
grand with continuous factors is that 0(#, y) be of bounded 
variation in a certain sense of his own|| (</> c F). The condition 
of Fréchet is known to be weaker^! than that of Vitali. 

The following questions naturally present themselves : 
(a) In each case is the sufficient condition of Fréchet also 

necessary? 
(b) In each case is the condition shown by Fréchet to be suffi-

t Such integrals have recently been considered or employed by T, H. 
Hildebrandt and I. J. Schoenberg, On linear functional operations . . . , Annals 
of Mathematics, vol. 34 (1933), pp. 317-328; I. J. Schoenberg, On finite-rowed 
systems of linear inequalities . . . , II, Transactions of this Society, vol. 35 
(1933), pp. 452-478; and C. R. Adams, Hausdorff transformations for double 
sequences, this Bulletin, vol. 39 (1933), pp. 303-312. 

t Fréchet, loc. cit. 
§ The function <f>(x, y) is said to be of bounded variation in the Vitali sense 

if there exists a positive quantity M such that for every net on R we have 
X ^ d [ An<t>(xi, yf) | < M ; and to be of bounded variation in the Fréchet sense if 
there exists a positive quantity M such that we have Yl7.i=i^Au<f>(xi, yj)<M 
for every net on R and every possible choice of the numbers e» and «, equal to 
• f l o r - 1 . 

|| Fréchet, Sur les fonctionnelles bilinéaires, Transactions of this Society, 
vol. 16 (1915), pp. 215-234. 

1[ See Littlewood, On bounded bilinear forms in an infinite number of vari­
ables, Quarterly Journal of Mathematics, Oxford Series, vol. 1 (1930), pp. 
164-174, or Clarkson and Adams, loc. cit. 
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cient for the existence of the restricted integral also sufficient 
for the existence of the unrestricted integral ? 

(c) In the second case is the condition of Fréchet, employed 
when the integrand is factorable, sufficient for the existence of 
the integral (either restricted or unrestricted) when the inte­
grand is continuous but not necessarily factorable? 

We shall show (i) that the answer to both questions (a) is 
affirmative, which implies a negative answer to (c) ; and (ii) that 
the answer to (b) is affirmative for the first case and negative 
for the second. 

2. Integrals of Functions not Assumed to be Factorable, 

THEOREM 1. A necessary (as well as sufficient) condition that 
the restricted integral (2) shall exist for every continuous f (x, y) is 
that cj> c V. 

PROOF. Assuming that c/>(x, y) does not satisfy this condition, 
we shall show that there always exists a continuous function 
f(x, y) such that (2) does not exist. 

Clearly there must exist in R at least one point P having the 
following property : in at least one of the four quadrants about 
P , (j> is not c V in every rectangle with sides parallel to the axes 
and one vertex at P . Without loss of generality we may and 
do assume that this is the third quadrant. Hence we infer the 
existence of an infinite sequence of such rectangles {Rp} , each 
subdivided into cells by a net Np of lines parallel to the axes, 
such that 

(i) the lower left corner of Rp+i lies in the interior of the upper 
right cell of Np ; 

(ii) Z I An*(*,, yi) \>p, (p= 1, 2, 3, • • •). 

Now define the function f(x, y) as follows. At the lower left 
vertex of each cell of Np, (p = l, 2, 3, • • • ),let f(x,y) = +l/p or 
— 1/p, according as An</>(#;, yfi is ^ 0 or < 0 for that celL Let 
each of these vertices be surrounded by a small square Sffl in 
such a way that all the S$ lie below a horizontal line which in 
turn lies below all the S # + 1 \ and to the left of a vertical line 
which in turn lies to the left of all the S$ + 1 ) . Now let f(x, y) 
vanish at any point which is not in the interior of some S$\ 
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and be so defined within these squares as to be continuous over 
R} which is clearly possible. 

Then the integral (2) does not exist for this function. For 
assume that it does, and let A be its value. Then there exists a 
S > 0 such that for any net on R, the norm of whose sub­
divisions is < § , we have | -4 —*S| < l / 2 , where S is formed for 
this net, and any choice whatever of the intermediate points 
£i, r] j . Let such a net N be fixed. Add to N the horizontal and 
vertical lines through P to form the net iV', and to N' add the 
lines, suitably extended, of the net Nk, where k is chosen suffi­
ciently large so that the squares S$ associated with the net Nk 
lie in the interior of that cell of Nf which has P for upper right 
vertex. Let N" be the resulting net. 

Let S\ be the sum S formed for the net iV', where the points 
%i, rjj are so chosen that ƒ(£», rjj) = 0 in all terms of 5 associated 
with those cells of N' which lie in the column immediately to the 
left of P , and the row immediately below P ; aside from this the 
choice may be arbitrary. Let S2 be the sum S formed for the 
net N", with the £», rjj chosen thus: in those columns of N" 
which are also columns (extended) of Nk, let the {< be selected 
as the left-hand point of each interval. In the next column to 
the left of these select £* such that ƒ(£*, y) = 0 for all values of y. 
Analogously, in those rows of Nn which are also rows (extended) 
of Nk, let the rjj be selected at the bottom of each row ; and in the 
row immediately below these, select rjj such that f(x, rjj) = 0 for 
all x. Let the remaining points be chosen as in Si. 

Then as the norms of both N' and N" are < S, we have 
| < 4 - S i | < l / 2 , 1-4-5 a | < 1/2, and hence | S i - S 2 | < 1 ; but with 
the specified choice of nets and intermediate points, S2 — S i > l , 
with which contradiction the proof of Theorem 1 is complete. 

COROLLARY 1. A necessary (as well as sufficient) condition that 
the unrestricted integral (3) shall exist for every continuous f (x, y) 
is that (j> c V. 

PROOF. The sufficiency of the condition may be shown by a 
method which does not differ in any essential from Fréchet's 
existence proof for the restricted integral.! The necessity follows 
from Theorem 1. From Theorem 1 and Corollary 1 we have at 
once the following result. 

t See Fréchet, Nouvelles Annales, loc. cit. 



934 J. A. CLARKSON [December, 

COROLLARY 2. If for a given 4>(x,y) the restricted integral exists 
for every continuous integrand, then the unrestricted integral must 
exist for every continuous integrand. 

3. Integrals of Factorable Functions. 

THEOREM 2. A necessary (as well as sufficient) condition that the 
restricted integral 

ƒ• 6 n d 

I g{oo)h(y)dxdy^>(xy y) 
a J c 

shall exist for every pair of continuous f unctions g(x) and h(y) is 
that 0 c P. 

PROOF. Assuming that <j> is not c P, we shall show that there 
always exists a pair of continuous functions g(x), h(y) such that 
(4) does not exist. 

As before, we see that there must exist at least one point P 
(#o, yo) in R with the following property: in at least one of the 
four quadrants about P , <j> is not c F in every rectangle with 
sides parallel to the axes and one vertex at P . Again we assume 
the quadrant to be the third. Hence there exists an infinite se­
quence of such rectangles {Rp} , on each of which there exists a 
net NPi such that 

(i) the lower left vertex of Rp+1 lies in the interior of the upper 
right cell of Np; 

(ii) 2><€y An0O t-, yi) >p\ ( £ = 1 , 2, 3, • • • ), 
Np 

for some choice of the e/s and e/s as + 1 or — 1. 
Let mpy np be the number of rows and columns, respectively, 

in the net Np. Let l\p), (i = 1, 2, 3, • • • , np — l), be the segments 
cut off on the x-axis by the (np — 1) left-hand-most columns, ex­
tended, of NP1 numbering serially from the left; and let 1^ be 
the interval lying between I^-x and l[p+1). 

We may now define g(x) as follows. Interior to the interval 
I^\ (i = l, 2, 3, • • • , np; p = l, 2, 3, • • • ), select any two dis­
tinct points Xip and XiP' ; let g(x) at these points assume the 
values +l/p and — 1/p, respectively. Let g(x) vanish for 
x^xo, and be so defined for remaining values of x as to be con­
tinuous in the interval a^x^b. 

Let J$p\ (j = 1, 2, 3, • • • , mp;p = l, 2, 3, • • • ), denote the an-
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alogous set of segments on the ;y-axis, and define the function 
h(y) in precisely similar fashion, the points analogous to XiP and 

being denoted by y3-p and y3-J. 
Now suppose that the integral (4) exists with this choice of 

g and h. Let e(>0) be fixed. Then there exists a ô > 0 such that 
for any net N on R the norm of whose sub-divisions is < S, and 
any choice whatever of the intermediate points £*, rjj, the in­
equality. 

\S -A\ = \ E^tt*)*(i7/)An0(^, yf)-A\ < € 

is satisfied, where A is the value of (4). Let N, such a net, be 
fixed. Add to N the horizontal and vertical lines through P to 
form the net N'. Let k be any integer >2e and such that the 
lower left vertex of RQ lies within the cell of N' whose upper 
right vertex is P. Add to N' the lines of Nk, suitably extended, 
to form the net N"'. 

Let the sum S be formed for the net Nn. In those rows of cells 
of N" which are not also rows (extended) of Nk let the points 
rjj be chosen arbitrarily; and also let an arbitrary choice be 
made of those & which attach to all columns of N" except 
those which are also columns (extended) of Nk. In view of con­
dition (ii) we may clearly select the remaining f * and rjj from 
among the points Xik, Xi{ , y^ yd in such a manner that B, the 
part contributed to 5 by the cells of Nk, shall exceed k. Let Si 
denote the resulting value of the sum 5. Let C denote that 
part of Si which is contributed by cells of N" lying in rows of 
N" tha t are also rows (extended) of Nk, excepting the cells 
of Nk\ let D denote the part contributed by cells of N" which 
occur in columns of Nn tha t are at the same time columns 
(extended) of Nk, excepting the cells of Nk', let E denote the 
remaining part of Si. Then we have Si—B + C+D+E and 

\ A - B - C - D - E \ < e . 

Now form the sum £2 by using the same net N" and the same 
choice of the points £i, rjj, except that those of the £i which were 
selected from the Xik and Xii are to be altered as follows: in 
every case where formerly a point Xik was chosen, to form 52 

choose instead the point xik' which occurs in the same interval 
lf\ and vice versa. Then we clearly have 52= — B + C — D+E, 
and \A+B-C+D-E\ <e. 
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By repeated use of this device we easily see that the follow­
ing inequalities are also satisfied : 

| il + B + C - D- E\ < e, 

\A - B + C + D - E\ < €. 

From these inequalities we have at once 

(5) \B + D\<€, 

(6) \B + C\<e, 

(7) \C + D\<e. 

But B > k > 2 e ; hence from (5) and (6) we have D< — e, C < — e, 
whence | C+Z?| >2e ; and as this contradicts (7), the theorem is 
proved. 

THEOREM 3. A necessary (as well as sufficient) condition that 
the unrestricted integral 

(8) (*)ƒ ƒ g(x)h(y)dxdv<l>(x) y) 

shall exist for every pair of continuous f unctions g(x), h(y) is that 
0 c F . 

PROOF. Again we assume <j> is not c V, and by the same argu­
ment as before show the existence of an infinite sequence of rec­
tangles {RP} with nets Np as in the proof of Theorem 2, the 
condition (ii) given there being now replaced by the condition 

(iii) Z I An*(*«, yi) \ > p\ (p = 1, 2, 3, • • • ). 
(WP) 

Then the functions g(x) and h(y) defined in that theorem will 
serve as a pair of functions for which the unrestricted integral 
(8) will not exist. Since for each p there is in every cell of the net 
Np a point at which g • h = 1/p2, and a point at which g-h= — 1/p2, 
the argument is sufficiently clear without giving the details of 
the proof. 

COROLLARY. If for a given </>(x, y) the unrestricted integral (3) 
exists for every f adorable integrand with continuous f actors, it must 
exist for every continuous integrand. 
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