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FURTHER MEAN-VALUE THEOREMS*
BY MORRIS MARDEN

The present note is a sequel to my recent article} in which
certain mean-value theorems due to Weierstrass and Fekete
were generalized. The generalizations resulted from replacing a
positive real weight-function by one assuming only values in the
angular region 0 <arg w=+vy <w. Here the generalizations will
be extended in such a manner as to yield analogous theorems in
which the weight-function takes on arbitrary real values (Corol-
lary 2, Theorem 3) or more generally any values in the double
angle 0 <arg (+w) =<y <7 (Corollary 1, Theorem 3). Inciden-
tally, these extensions yield (as Corollary 3, Theorem 3) the
generalization of the Gauss-Lucas theorem which formed the
principal result of another paper.}

In what follows we shall denote by f(Z) the point set w=f(z)
obtained on letting point 2z vary over the point set Z; by A arg
(Z —p) the magnitude of the smallest angle, with vertex at the
point p, enclosing the point set Z; by K(Z) the smallest convex
region containing set Z, and, finally, by S(Z, 0) the star-shaped
region composed of all points from which the set Z subtends an
angle of not less than 6. The regions K(Z) and .S(Z, 6) can also
be defined as the loci of all points p which satisfy respectively
the inequalities A arg (Z—p)=, A arg (Z—p)=6. Obviously,
S(Z, 0)=S(K(Z), ) and hence S(Z, 0) always contains K(Z).
Finally, in what follows, the two rectifiable curves

C: z=23(s), a <s =0 T: AN=AN¥), ast=8,

will serve as the curves of integration, and, unless further
qualified, all functions introduced hereafter will be supposed to
be continuous on these curves except perhaps for a finite number
of finite jumps.

* Presented to the Society, April 15, 1933.

1 M. Marden, this Bulletin, vol. 38 (1932), pp. 434-441.

1 M. Marden, On the zeros of certain rational functions, Transactions of this
Society, vol. 32 (1930), pp. 658-668.
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THEOREM 1. Let there be given the real numbers m; and the func-
tions fi(z) and g(2) with A arg g(C) =y <w. Then each point o as
defined by the equation

(1) [ e 15 = o1™as = 0

lies in the region S[K(fi(C), £:(C), - - -, fu(C)), (v—7)/m],
where m=2’1‘l m;l.

THEOREM 2. Let, in particular, each fi(2) be a rational function
with exactly n; finite zeros and p; finite poles, none of the latter
lying in the region S(C, (w—<)/n), where n=2{‘|m,| (pi+gs)
and g;=max (n;, p;). Then for each value o as defined by (1) there
exists at least one integer 1, 1 <1=<h, and at least one point z in
S(C, (w—7v)/n), such that fi(z) =a.

Suppose Theorem 1 were not true; that is, suppose that, for
some ¢ and for all 7,

A arg [f(C) — o] <TZ7.

Then

T—

Aarg [fi(C) — o]™ < [ mi ,

and hence

h
Aarg g(©) 111f«(C) — o]™ < .
=1
Accordingly, the left hand-side of (1) is a sum of vectors each
drawn from w =0 to points on the same side of some line through
w=0. As such a sum cannot vanish, the assumption that The-
orem 1 is false contradicts equation (1). Hence Theorem 1 must
be true.

Similarly, let us suppose Theorem 2 to be false; that is, writ-
ing
(2 — aa)(z — @) - - (2 — @igs)
i )
(3 — bir)(z — biz) -+ - (3 — Dip:)

let us suppose that for all j and &

f,-(z) —0o=4

™9
Aarg (C— afk) <
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Since we know by hypothesis, for all j and %, that

™=
Aarg (C— b]L) <

)

it would follow that
™=
Aarg [fi(C) — o] < T(Pi + 94,
and hence

h
Aarg g(€) IT[1(C) — o]™ < .
=1
Again equation (1) would be contradicted and hence Theorem 2
must be true.

On setting each m; =% =1, we obtain from Theorem 1 a previ-
ous generalization® of Weierstrass’ mean-value theorem, and on
setting also v =0, we derive his original theorem.?

The choice m;—1=p;,=h—1=0 for all 7 reduces Theorem 2
to the previous generalization of Fekete’s theorems,] particu-
larly of his following two theorems.

(1) If f(2) is a polynomial of degree n and f(a) #f(B), o #B, it
assumes every value between f(a) and f(B), that is, on the line-
segment joining f(c) and f(B), at least once in S (seg a3, w/n).

(2) If P(2) is a polynomial of degree n and P(a) =P(B), o #B,
then P'(2) =0 at least once in S(seg af, m/(n—1)).

The first of Fekete’s theorems is analogous to the Bolzano
theorem for continuous functions of a real variable. The second
Fekete theorem is analogous to Grace's theorem§, that under the
same assumptions, P’(2) =0 at least once in the circle with its
center at (a¢+p)/2 and with a radius of %Iﬁ—al ctn (w/n).
It is interesting to note that, since the circle of Grace’s theo-
rem passes through the centers of the two circles bounding

* M. Marden, this Bulletin, loc. cit., p. 435.

t Osgood, Lehrbuch der Funktionentheorie, 1923, vol. I, p. 212.

I See this Bulletin, loc. cit., p. 438 and p. 440. Also M. Fekete, Acta Szeged,
vol. 1 (1923), pp. 98-100, and vol. 4 (1929), pp. 234-243; Mathematische Zeit-
schrift, vol. 22 (1925) pp. 1-7; Jahresbericht der Deutschen Mathematiker-Ver-
einigung, vol. 32 (1923), pp. 299-306, and vol. 34 (1926), pp. 220-233. J.v. Sz.
Nagy, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 32 (1923),
pp. 307-309.

§ P. J. Heawood, Quarterly Journal of Mathematics, vol. 38 (1907), pp.
84-107.
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S(seg af8, m/(n—1)), a better approximation to a zero of P’(z)
is obtained through use of both Grace’s and Fekete's theorems
than through either separately.

Theorem 1 may be stated in the following more general form.

THEOREM 3. Let there be given the funmctions fi(z, N\) and
2(z,\) with A arg g(C,T) =+ <. Then each point o defined by the
equation

B b h .
& f f 8(z N) I:I[fi(zy N) — o] ™dsdt = 0,
lies in
s| &Ge, 1, e, 1, e, 1, ],
m

where m=2fl mi| .

This theorem may be proved precisely as was Theorem 1.

If in Theorem 3 we specialize A(¢)=0 fora=0=¢(<1=fand
AN =1for1<t=2=pand f(z 0)=—f(z, 1) =f(2), and if we let
21(2) =g(z, 0) and g(2) =g(z, 1), we derive the following result.

COROLLARY 1. Let there be given the functions f(z), g1(2), and
22(2) with 0 =Zarg g:(2) £y <w for i=1, 2; then the point o, as de-
fined by the equation

b b
[ 16t = 6@lis = o [ o) + ato)1as,
lies in
SCE 1O, 7 = ).

This result leads us to a mean-value theorem in which the
weight-function g(z) is real, but not necessarily positive. We
may indeed define two functions g:(2) and g:(2) so that

81(z) = g(z), £() =0, for g(2) 2 0,
21(z) = 0, g2(2) = — g(z), for g(z) = 0.

These functions gi(z) and gu(z) fulfill the requirements of Corol-
lary 1 with y=0 and

g1z — () = g(&), @) + g6) =] .

The resulting theorem may be stated as follows.
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COROLLARY 2. Let there be given the complex function f(2) and
the real function g(2). Then the point o, as defined by the equation

b b
[ stwr@is=o [ 1g@as,

lies in K(+f(C)).
Finally in Theorem 3 let us specialize as follows:
a=0,8=1,a=0,b=r (an integer);
2(s)=z;forj—1=s<y;

M) =0;  g(z,0) = aj

mip =1,  fi(zj, 0) = aj for 1

= n;
mr = — 1, fi(z;,0) = b, for n4+ 1=k

n+m=h;

A 1A

and thus obtain the following corollary.*

COROLLARY 3. Let a; be any complex numbers such that for all 1,
0=<arg a; =y <m,and let a; and by for all j and k be points of a
given convex region K. Then all the zeros of the function

33 = Sebi(d),
where
(2 = i)z — aiz) -+ (2 — @in)
(2 = b)) (3 — big) - - - (2 — bim)

S(K,’r 7).

m + n

The particular case of this corollary y=a;—1=n=m—1=0
yields the theorem that the zeros of the partial fraction sum
Z:(z—zi)‘l lie in the smallest convex region enclosing the
points 2;. As this partial fraction is the logarithmic derivative
of the polynomial f(z) =4 (z—21) (z—2) + - + (3—2,), this special
case is identical with the Gauss-Lucas theorem for the zeros of
the derivative of a polynomial.
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$i(z) =

)

lie in the region

* See Marden, Transactions of this Society, loc. cit.



