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THE PROBLEM OF PLATEAUf 
BY JESSE DOUGLAS 

1. Formulation. The problem of Plateau is to prove the 
existence of a minimal surface bounded by a given contour. The 
first and only complete solution of this problem was found by 
the present author [ l - l l ] { ; in this solution the contour is an 
arbitrary Jordan curve in w-dimensional euclidean space. Be­
sides this generality of result, the chief contribution of the work 
seems to lie in the introduction of a certain new functional 
A (g), which furnishes the key to the Plateau problem and makes 
clear its relationship to other fundamental problems of analysis. 

For definition of minimal surface, we take the formulas of 
Weierstrass, 

(1) Xi = Wi{w), I X ' 2 («0 = 0, 

though Weierstrass himself considered only the case n = 3. 
Here w is a complex variable, w = u-\-iv, of which the Fi are 
monogenic functions. When n = 2, these formulas become 

(2) xi = JRFi(w), x2 = WF2(w), F{*(w) +Fl2(w) = 0, 

or 

(3) Fi(w) ± iF{{w) = 0. 

If 

Fi(w) = Px(«, v) + iQi(u, v), F2(w) = P2(u, v) + iQ2(u, v), 

then 

dPi mdQi dPi tdPx 

F{ (w) = h i = — i j 
du du du dv 

dP2 dQ2 dP2 ,dP2 

F2 (w) = f- i = i ; 
du du du dv 

t Address delivered by invitation of the program committee at the New 
York meeting, October 29, 1932. 

% Numerical references are to the bibliography at the end. 
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where we have used the Cauchy-Riemann equations for Px, QXy 

and P 2 , £?2- If we use the plus sign,f (3) implies that 

dPi dP2 dPx dP2 

du dv dv du 

which are the Cauchy-Riemann equations for the functions (2), 
that is, these functions are conjugate harmonic. The equations 
(2) therefore represent a conformai map of the plane Xi+ix2 on 
the w plane. 

Consequently the problem of Plateau, as I have formulated 
and solved it, contains the conformai mapping problem of 
Riemann: to map conformally a given plane region on the in­
terior of a circle (in the very general case of any region bounded 
by a Jordan curve). I t will include also the theorem of Osgood 
[31] and Carathéodory [32] to the effect that the map remains 
one-to-one and continuous as between the circumference of the 
unit circle and the Jordan curve bounding the given region. 

2. Historical. The Plateau problem is named for the Belgian 
natural scientist J. Plateau [27], who made numerous experi­
ments with soap films, realizing a large variety of minimal sur­
faces. A soap film, under its surface tension, takes the form of 
least area consistent with its constraints, that is, with the con­
dition of being bounded by a given contour; and this least area 
property is a characteristic of minimal surfaces. 

I t was in this way, indeed, that minimal surfaces first ap­
peared in mathematics, in a pioneer memoir of Lagrange (1760) 
[28] on the calculus of variations for double integrals. The 
analytic formulation of the problem of least area is 

(1 + p2 + q2)ll2dxdy = minimum, 

among all surfaces z =ƒ(#, y) with a given boundary T, and the 
condition found by Lagrange for the minimizing surface is 

CO (1 + q2)r - 2pqs + (1 + p2)t = 0, 

where p, q, and r, s, t denote, as usual, the first and second 
partial derivatives of z. Some years later (1776), Meusnier in-

t The minus sign leads to an inversely conformai transformation. 

ƒƒ 



1933-1 PROBLEM OF PLATEAU 229 

terpreted this equation geometrically as expressing zero mean 
curvature : 

1 1 
— + — = 0. 
Ri R* 

With the use of complex quantities, Monge (1784) integrated the 
partial differential equation of minimal surfaces, applying the 
parametric form of representation instead of the restricted form 
z=f(x, y)y and the formulas (1) of Weierstrass (1866) are es­
sentially a transformation of those of Monge. 

The problem of Plateau was taken up by Riemann [23], 
Weierstrass [24], and Schwarz [25], who confined themselves 
in the main to the case where the given contour is a skew poly­
gon. They made the problem depend on a monodromy-group 
problem associated with a linear differential equation of the 
second order 

d26 dd 

aw1 aw 

whose coefficients p and q are rational functions of w\ but they 
did not succeed in obtaining a complete solution even for the 
polygonal case. 

S. Bernstein (1910) [21 ] and A. Haar (1927) [20] did im­
portant work on the problem, using the restricted representa­
tion z=f(x, y) of the surface. Bernstein took for basis the 
elliptic partial differential equation (4), and considered the 
Plateau problem as a generalized Dirichlet problem with the 
equation (4) taking the place of Laplace's equation r + / = 0. 
Haar used the direct methods of the calculus of variations in­
troduced by Hubert. Both writers assumed the given contour 
to have a convex projection on the x^-plane. 

The case of a contour of general shape has been considered 
only in recent years. R. Gamier (1928) [19] followed the classic 
methods of Riemann and Weierstrass, and concluded the 
existence of a minimal surface bounded by any given contour 
of (piece-wise) bounded curvature. Besides the general difficulty 
of following Garnier's developments to this conclusion, it is to 
be remarked that his work is based on that of Weierstrass, 
who assumes explicitly that the contour has no knots.f It is 

t Weierstrass, Werke, vol. 3, p. 220, last line. 
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therefore hard to see how Gamier frees himself of this restriction. 
After the publication of the abstracts of the present author's 

papers in this Bulletin [ l - lO] , T. Radó obtained by other 
methods results, which, as far as the Plateau problem is con­
cerned, were not as general as those already found by the 
present author. Radó used the conformai mapping of poly­
hedral surfaces approximating to the required minimal surface, 
and restricted the contour first to be rectifiable [17], and then 
[18] to be capable of bounding a simply-connected surface of 
finite area. 

The author, in collaboration with P. Franklin [16], has con­
structed an example of a step-polygon of a denumerable in­
finity of sides, every surface bounded by which has infinite 
area. Recently, I have constructed even simpler examples of 
Jordan space curves which bound no orientable surface of 
finite area f, for instance, the spiral defined in spherical co­
ordinates by the equations r = cos</>, 0 = tan5 cj>. The simplicity 
of these examples shows that one must be careful not to over­
estimate the generality of a contour that spans a finite area. 

The method of solution here explained was developed by the 
author in the years 1926-1929. Besides the abstracts in this 
Bulletin, the essential features of the work were widely publi­
cized by the author's lectures in mathematical seminars at Paris, 
Göttingen, and Hamburg during the year 1929. A compre­
hensive and didactic presentation was published in the Trans­
actions of this Society in January, 1931, [ l l ] , followed by 
papers extending the theory to two contours [12] and to one­
sided minimal surfaces [13]. 

The advantages peculiar to the present treatment may be 
recapitulated as follows : 

(i) The contour is subject to no restrictions whatever, except 
that it is any Jordan curve. The number of dimensions n of the 
containing euclidean space is indifferent. 

(ii) The conformai mapping theorem of Riemann for any 
Jordan region is included as the special case n = 2. 

(iii) The conformai map is derived from a topological cor­
respondence between the boundaries, so that the theorem of 
Osgood and Carathéodory falls out as an immediate corollary. 

f Proceedings of the National Academy of Sciences, vol. 19 (1933), Nos. 
2, 4. 
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3. The Weierstrass Proof of Attainment of a Minimum. The 
point and specific difficulty in the problem of Plateau is to 
prove that a certain minimum is attained, a minimum of area. 
The first to give a rigorous proof of the attainment of a mini­
mum was Weierstrass, when he showed that every continuous 
function of a real variable on a closed interval attains its maxi­
mum and its minimum values. 

The definition of a continuous function f{x) is that if xu 
#2, * • • , xn, • • • is any infinite sequence of points converging 
to a point x*, so that limn^00^n = x*, then l ining f(xn) =ƒ(#*). 

The property of continuity may be divided into two proper­
ties, lower and upper semi-continuity. A function is lower semi-
continuous if when 

(5) lim xn = x*, and lim f(xn) = L, 
n—> oo fi—¥ oo 

then 

(6) f(x*) ^ L. 

Similarly, a ^ sign in the last relation gives the definition of 
upper semi-continuous. 

The theorem that a continuous function on a closed interval 
attains its extreme values may be divided into two parts: a 
lower semi-continuous function attains its minimum ; an upper 
semi-continuous function attains its maximum. We need con­
sider only the first of these, since the two are evidently equiva­
lent by the transformation of f(x) into —ƒ(#)• Let us examine 
the simple details of its proof. 

Let m be the lower bound of the function f(x) in the interval 
(ab). The existence of m as a finite quantity is implied by the 
lower semi-continuity of /(V),t but often, as in the present ap­
plication, it is known a priori that m exists and is finite, for in­
stance, when f(x) is an essentially positive quantity. Then, by 
definition of lower bound, we can always construct a "minimiz­
ing sequence" 

(7) # l , # 2 j ' ' ' i #wi * * ' > 

t This results from the present proof that m, finite or — oo, is attained, that 
is, m is one of the values of the function ; and every value of f(x) is supposed 
finite. 
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such that 

(8) ƒ(*•), /<>2), • • • , f(xn), - - --+M. 

I t is to be noted that it is only the functional values which tend 
to a limit; the argument values need not do so. Now we can ap­
ply the theorem of Bolzano-Weierstrass to the effect that the 
infinite sequence of points (7) on the finite closed interval (ab) 
must contain a convergent subsequence 

This property of any infinite set of points of the interval (ab) 
is expressed by saying that this interval is a compact set of 
points. Of course, the limit point x* belongs to (aft), since (ab) 
is also a closed set. Together with (9), we have evidently 

(10) ƒ(*/) , ƒ(*/) , • • • , ƒ ( * / ) , >m, 

since (10) is a subsequence of (8); therefore, by the definition 
(6) of lower semi-continuity, it follows that f(x*)i*m. But 
f(x*)<m is impossible, by definition of lower bound; conse­
quently ƒ(x*) = m, which was to be proved; the minimum of 
f(x) is attained at x*. Such is the simple Weierstrass proof for 
the attainment of a minimum. It will be observed that it re­
quires only the following two conditions: 

(i) The argument range R is compact and closed] that is, 
every infinite sequence of elements of R contains a subsequence 
converging to a limit, which is also an element of R. 

(ii) The function ƒ is lower semi-continuous., 
A very general point of view as to functions on abstract sets 

of elements of any nature was developed by M. Fréchet [29] in 
his thesis, and the proof of attainment of a minimum was given 
by him as a consequence solely of the postulates (i) and (ii). 

The present writer's contribution to the problem of Plateau 
is essentially this : by means of the new functional A (g), to have 
given the problem an analytic formulation to which the Weier­
strass-Fréchet proof for attainment of a minimum applies im­
mediately. No treatment theretofore proposed does this. 

That the functional A (g) also unites the Plateau and Riemann 
problems of minimal surfaces and conformai mapping, is an ad­
ditional mark of its appositeness and importance, since that, 
too, was not accomplished by any previous point of view. 
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4. Comparison of Three Classic Problems. The classic analytic 
setting of the problem of Plateau was as a least area problem, 
the argument range consisting of all surfaces [S] bounded by 
the given contour T, and the functional to be minimized being 
5 ( 2 ) , the area of S. But to this formulation the Weierstrass-
Fréchet reasoning does not apply because the range [S] is not 
compact. 

I t will be instructive for purposes of comparison to consider 
also the Dirichlet problem. This is the problem of the existence 
of a function <j>(x, y), taking prescribed values on the boundary 
of a given plane region and obeying in the interior of the region 
Laplace's equation d2cj>/dx2+d2<l)/dy2 = 0. This equation expres­
ses the vanishing of the first variation of the integral 

taken over the region, so that the problem is equivalent to the 
minimizing of D(cj>) in the totality of functions of class C" t 
taking the prescribed boundary values. 

The conformai mapping of a region R on the interior of a 
circle depends on the solution of a Dirichlet problem for R. 
Let G(x, y; x0y y0) denote the Green's function for R. By defi­
nition, we have 

G(x, y; xo, y0) = g(x, y; x0, y0) + log r, 

where g is regular harmonic in R} r2 = (x — x0)
2 + (y — y<>)2, (x0, y0) 

denotes an arbitrary point of R, and G is required to reduce 
to zero on the boundary of R. This implies tha t g(x, y\ x0, y0) 
= —log r on the boundary, so that the determination of the 
Green's function for R consists of the solution of a certain 
Dirichlet problem. The Green's function having been found, 
the conformai mapping function can be written immediately 
as eG+iH', where H is the conjugate harmonic function to G. 

Riemann believed he could assert the existence of G, or the 
solution of the associated Dirichlet problem, by the following 
argument: D(4>) is always a positive number; let </>* be the func­
tion with the assigned boundary values f or which Disj>) is least] 
then 0* obeys Laplace's equation. Weierstrass pointed out the 

t Having continuous first and second partial derivatives. 
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gap in this reasoning, which consists in the assumption in­
volved in the italicized statement that there exists a function 
</>* for which the minimum of D(<f>) is attained. The cogency of 
the Weierstrass objection rests on the fact that the range of the 
argument [$], consisting of all functions of class C" in R and 
with prescribed boundary values, is not compact. We can start 
by forming a minimizing sequence $1, </>2, • • • , <K> • * • > with 

ZJfoi), £>(<fe), • • • , D($n), >min£>0), 

but nothing guarantees that this minimizing sequence contains 
a subsequence converging to a function of class C" (or even 
converging at all). If this difficulty could be passed, the lower 
semi-continuity of D(<j>) could then be used to prove the at­
tainment of the minimum. 

The typical and essential feature of the author's work on the 
Plateau problem is the introduction of a lower semi-continuous 
functional A(g) whose argument range is compact. This func­
tional is 

j t k m - giWT 
(11) A(g)=—f f — dOd*, 

4 sin2 

2 

whose argument g is an arbitrary parametric representation 
Xi = gi(6) of the given contour V as topological image of the unit 
circumference C. 

The positive number thus associated with any topological 
correspondence between T and C may be interpreted as propor­
tional to the mean square of the ratio of a chord of V to the cor­
responding chord of C. The topological transformation g* of 
C into T which minimizes A (g) and solves the Plateau problem 
may accordingly be regarded as the one which, on the average, 
brings the points of C closest together [33 ]. 

The connection of the functional A (g) with the Plateau prob­
lem is that if 

(12) Xi = Wi(w) 

denote the harmonic functions in the interior of the unit circle 
determined by the boundary values g<(0), which are given by 
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Poisson's integral 

1 c eie + w 
(13) Fi(w)-— \g<(0)- dd, 

2TTJC el9 — W 

then the vanishing of the first variation of A(g) expresses 
that ^2i=i Fl2(w) = 0, which is the condition for a minimal 
surface. 

The integral which expresses A(g) is improper, on account 
of the singularity when 0 = 0 ; but since the integrand is posi­
tive, A (g) always has a definite value, finite and positive or + oo. 
In the main body of the work we assume that A (g) is not identi­
cally equal to +<*> ; or, with the definition m ( r ) = m i n A(g)} 

that m(T) is finite. A sufficient condition for this is that V be rec-
tifiable. A more concrete interpretation of m(T) is as the mini­
mum area of all simply-connected surfaces bounded by I \ f 
Afterwards, by an easy limit process, the existence proof is ex­
tended to the case m(T) = + oo of an arbitrary Jordan contour. 

The following is a summary of the relationships between the 
three problems we have been comparing. 

A. Dirichlet. (a) The argument range [0 ] consists of all func­
tions of class C" in a given region R with assigned values on the 
boundary T of R. 

(b) The functional is 

(c) D((f)) is lower semi-continuous (positive integrand). 
(d) [<t>] is not compact. 
(e) The Weierstrass-Fréchet reasoning cannot be applied to 

prove that min D{<j>) is attained. 
(f) 3D(0) = 0 is Laplace's equation. 

B. Least Area, (a) The argument range [S] consists of all 
surfaces of class C" bounded by a given contour I \ 

(b) The functional is the area of S : 

SÇS) = f f (EG- F*)U*dudv. 

t With this interpretation, m(T) was first defined by Lebesgue [22], p. 304. 
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(c) 5 (2 ) is lower semi-continuous (positive integrand). 
(d) [ 2 ] is not compact. 
(e) The Weierstrass- Fréchet reasoning cannot be applied to 

prove that min 5 (2 ) is attained. 
(f) S5(2) = 0 is 1 / ^ + 1/^2 = 0, which expresses the vanish­

ing of the mean curvature of 2 . 

C. Plateau-Riemann. (a) The argument range [g] consists of 
all parametric representations of the given contour T, or all 
topological correspondences between T and the unit circum­
ference C. 

(b) The functional is 

j Êk<(»)-«<(*)] f 

Mg) =— f \ — F TdBd<j>. 
4 7 r J c J c 4 s i n 2 [ ( 0 - 0 ) / 2 ] 

(c) A (g) is lower semi-continuous (positive integrand). 
(d) [g] is compact. 
(e) Therefore, by the Weierstrass-Fréchet reasoning, the 

minimum A(g) is attained. 
(f) 8A(g)=0 i s ^ = 1 F / 2 ( ^ ) = 0 , which expresses that the 

harmonic surface Xi = $tFi(w) determined by the boundary 
values Xi = gi(6) is minimal and in conformai representation on 
the interior of the unit circle. For n = 2, this gives the Riemann 
mapping theorem, together with the theorem of Osgood and 
Carathéodory. 

S. Solution of the Problem of Plateau. OUTLINE. We shall first 
outline the successive steps in the solution, and then give the 
details of proof. An arbitrary parametric representation of T 
can be defined by writing some fixed initial parameter t, which 
may be supposed to vary from 0 to 27r, as a monotonie increas­
ing continuous function of 0, the polar angle on the unit circle: 
/ = /x(0). Since all these functions /JL have the same total variation 
27T, their set is compact, according to a theorem of Helly.f To 
obtain closure of the set, we must however introduce improper 

t An infinite set of functions is compact if the functions are uniformly 
bounded and of uniformly bounded variation. As stated in geometric form 
by Fréchet [29], an infinite set of curves all contained in a finite region and of 
uniformly bounded lengths is compact. This theorem goes back to Hubert, in 
his work on the Dirichlet principle, Jahresbericht der Deutschen Mathe-
matiker-Vereinigung, vol. 8 (1899), p. 184. 
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representations g, corresponding to functions fx whose graph 
contains line-segments parallel to the t or 6 axis. These cause a 
partial arc of T to correspond to a point of C (first kind), or a 
partial arc of C to a point of T (second kind) ; finally, there is the 
extreme case of a representation causing all of T to correspond 
to a single point of C and all of C to a single point of T (de­
generate representation). Graphically, this is represented by a 
line segment of length 2w along the 6 axis joined to a line seg­
ment of length 2TT parallel to the t axis, and must be included for 
closure of the set since evidently it can be obtained as a limit 
of proper monotonie graphs. 

I t will follow easily from the positive nature of the integrand 
of A (g) that this functional is lower semi-continuous; hence, by 
the Weierstrass-Fréchet reasoning, the minimum of A(g) is at­
tained for a certain representation g*. 

The surface Xi = dlFi(w) determined by g* according to the 
formula (13) obeys the condi t ionX^=i^/ 2(^) =^ characteristic 
of a minimal surface, for this condition, as will be proved, ex­
presses that ÖA (g) = 0 for g = g*. 

I t remains to exclude the possibility that g* be improper or 
degenerate. The representation g* cannot be improper of the 
first kind, for it will be shown that then A (g) = + oo, whereas, 
by assumption, A{g) sometimes takes finite values. The case g* 
improper of the second kind will be ruled out with the help of 
the condition X ) L i ^ / 2 W = 0 . 

The possibility that g* is degenerate will be prevented by the 
observation that A (g) is invariant under linear fractional trans­
formation of the unit circumference into itself: 

0' a tan {6/2) + b 
tan — = j 

2 c tan (6/2) + d 

involving three arbitrary constants alblcld. Therefore no 
generality is lost if we fix three distinct points Pi, P 2 , Pz of C 
and three distinct points Ci, (?2, Qz of T, and consider only those 
topological correspondences between C and T which cause these 
points to correspond respectively. Then at most the sum of two 
of the arcs P1P2, P2P3, P3P1 can correspond to a point of T, and 
the sum of two of the arcs Q1Q2, Ç2Q3, QzQi to a point of C. The 
degenerate representations are thus excluded. 
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The minimizing representation g* is therefore proper ; conse­
quently the minimal surface determined by it is bounded by T, 
for Poisson's integral attaches continuously to its boundary 
values at every point 6 where these values are continuous, and 
a proper representation is everywhere continuous. 

This is the outline of the solution of the Plateau problem 
for all contours with finite m(T). The case m(T) = + oo will then 
be dealt with by means of a simple limit process. 

We proceed to develop the details. First, we write an ex­
pression for A (g) in terms of complex variables : 

(14) Mg)=^( f Ê k<(*) - Uï)îj^-> 
4TJC JC i-i (z - f)2 

where 

(15) z = eie, f = e* 

vary over the unit circumference C, regarded as contained in the 
complex plane. The identity of (14) with (11) is immediate, by 
the substitution (15). Another way of writing (14) is 

(16) A (g) = — f f £ \gt(z) - gitt) f- (z, z + dz,Ç,Ç + dÇ), 
47T Je Je 4=1 

where the parenthesis denotes an anharmonic ratio. From this it 
is evident that, although complex quantities enter into the 
element of integration, its value is real and positive, since 2, 
z+dz, f, f + d f are concyclic points and the first pair is not 
separated by the second. This positive real character is, of 
course, also known through the identity of (14) with (11). 

I t follows immediately from the form (16) that A(g) is in­
variant under any linear fractional transformation 

az + 13 
(17) *' = - , 

yz + ô 
where a, /3, 7, S are any complex quantities such that aô— /3Y 
5^0. This is the invariance property of A(g) used in the pre­
ceding outline to avoid the degenerate representations. The 
transformation (17) also shows that any circle C in the complex 
plane may be used instead of the unit circle on which to repre­
sent T parametrically, A (g) being defined by (14) or (16). 
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LOWER SEMI-CONTINUITY. That the functional A (g) is lower 
semi-continuous is to be seen as follows. We have to define 
A(g) as an improper integral by the formula A(g) =lim6H>0 

A<(g), where A e(g) is defined by (14) with the variables of in­
tegration restricted by \z — f | ^ e. The functional A t{g) is, for 
every fixed e > 0 , continuous, which means that if g is a variable 
representation of V which approaches a certain fixed representa­
tion as limit, then lim Ae(g) =^4e(lim g). This results from a 
theorem of Lebesgue, according to which one may pass to the 
limit under the sign of integration provided the integrand re­
mains uniformly bounded; and a uniform upper bound for the 
absolute value of the integrand of A €(g) is d2/e2, where d is the 
diameter (greatest chord) of T. 

The approach of A €(g) to A(g) as e—>0 is in a monotonie in­
creasing way, since diminishing e adds positive elements to 
the integral. I t is easy to prove the following lemma, f 

A functional is lower semi-continuous if it can be represented 
as the limit of a continuous functional which tends to it in increas­
ing. 

Hence A (g) is lower semi-continuous. This, with the compact­
ness and closure of the set [g], proves the existence of g* for 
which the minimum of A (g) is attained. 

EXCLUSION OF IMPROPER REPRESENTATIONS OF THE FIRST 

K I N D . T O exclude the possibility that g* is improper of the first 
kind, let / > 0 be the length { of the chord of the arc of V which 
corresponds in the improper representation to the point P of C; 
then if z and f are on opposite sides of P and approach to it, the 
integrand of A(g) has asymptotically the form [l2/(z — Ç)2]dzdÇ, 
of which the indefinite integral is I2 log (z — f ), and this becomes 
infinite for z = f, giving the result A (g) = + oo . 

We now know that g* is proper or, at the worst, improper in 
such a manner that it remains constantly at a fixed point of T 
while z describes a partial arc of C. Accordingly, g* is, in any 
event, continuous. We can then form, with the boundary values 
g — g*, Poisson's integral : 

1 r z + w dz 
(18) %i = SRF<(w), Fi(w) = — gi(z) , 

ZTtJc Z — W Z 

t [11], p. 282. 
% In the condition l>0, we are using the assumption that the contour has 

no double points; the end-points of any partial arc of T are distinct. 
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which will define a harmonic surface bounded by V. 
VANISHING OF THE FIRST VARIATION OF A (g). The point now 

is that the vanishing of the first variation of A (g) for g = g*> 

(19) ôA(g) = 0, 

expresses exactly the condition 

(20) I X 2 M = 0, 

which characterizes as a minimal surface the one defined by the 
formulas (18). After (20) has been established, it will be easy to 
get rid of the remaining possibility that g* be improper of the 
second kind. 

In proceeding to the proofs, we first derive from (18), by a 
permissible differentiation under the integral sign, the formula 

1 c dz 
(21) Fi(w) = - gi(z)- - , 

7Tt J C \Z ~ 

dz 

(z — w)2 

and therefrom 

dzdÇ ±FiHw)=--f f ±gi(z)gi(jt)-
1=1 7T 'J C J C i = l ' (z — w)2(Ç — w)2 

whence 

(22) ±Fi*(w) = -^ ƒ f ±[gi{z) - gi(Ç)f- ^ ~ 
w)2 

where the terms gi(z)2 and g4(f)2 in the expansion of the bracket 
contribute zero, since 

J dÇ r dz 
= 0, = 0. 

c (f — w)2 J c (z — w)2 

Next we observe that (using the subscript zero to denote the 
conjugate complex quantity) 

1 1 
and 

Z(Z — W) 2o(Zo — Wo) 
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are conjugate complex; consequently 

Xi i and i\\ 1 • 1 
(z(z ~ W) ZO(ZQ — Wo)) {z(z — w) Zo{Zo — Wo)) 

are pure imaginary, where X denotes a real parameter and w 
any fixed point interior to the unit circle. Hence the trans­
formations 

(23) z' = z exp \ \ 1 , 
\z(z — w) Zo(zo — wo)) 

(24) z' = z exp i\ \ | 1 
\z(z — w) Zo(z0 — wo)) 

convert points of C into points of C, since they leave \z \ in­
variant. For X = 0 these transformations reduce to z' =z, or on 
C, B' = Ö, for which dd'/dd = 1. Therefore, for X small enough ab­
solutely, dd'/dd certainly remains positive since it is nearly 
equal to one; consequently the transformations (23) and (24) 
are, for |X| sufficiently small, monotonie continuous trans­
formations of the unit circumference into itself. Accordingly, if 
we apply (23), together with the same transformation f—>£*', 
to A(g*), we get a function AiÇh) with a relative minimum at 
X = 0. 

The transformation (23) may be expanded in a convergent 
power series in X : 

(25) z' = z + \\ — :} + •••, 
Kz — w z0{zo — Wo)) 

from which results a convergent power series for the differential : 

dz'd? dzdÇ 

Multiplying this by 

+ x ... + 

£ [ w ) - 'gi(nf= Z t o - gi(f)f, 
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and integrating term by term,f we get a power series expansion 
for Ax(K) of the form AiÇk) = ,4(g*)+XFi + • • • . Because of 
the minimum of Ai(X) atX = 0, we deduce 

(26) Vi = 0. 

Similarly, applying the transformation (24) in expanded 
form 

(27) z' = z + ikl + — — -) + • • • , 
\z — w ZQ(ZQ — Wo)) 

weget-42(A) =A(g*)+i\V2+ • • • , and hence 

(28) V2 = 0. 

Now it is evident, as a formal matter, that we would get 
the same first power coefficients, or variations Fi, F2, if we 
broke off (25) and (27) after the terms written. I t is clear also 
that if we use any linear combination of the coefficients in (25) 
and (27), such as one-half the sum: 

X 
(29) s' = H , 

z — w 
and apply this transformation to A(g*)> thus getting an ex­
pansion 

(30) A(g*)+\V*+.'., 

then Fa is the same linear combination of Vi and F2 : 

V* = UVi + V2); 

consequently, by (26) and (28), 

(31) F 3 = 0. 

We therefore apply the simple variation (29) to A(g*) and 
calculate F3. The following are the computations, all terms be-
yond the first power of\ being neglected : 

f The validity of this operation is easily established by classic convergence 
theorems (Cauchy appraisal theorem, Weierstrass double-series theorem) ; see 
[1], §§13, 14. 
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X X 
z' = z + , f ' = f + z — w f — w 

dz' = \ 1 \dz, dÇ' = { 1 W , 
I (2 - w)2 J I (f - W)2/ 

I (z - w)2 (f - w)2 ƒ 

8'_f' = (a-i-)il — 1, 
I (z — w)(£ — w)) 

dz'di' dzdÇ ƒ T 1 1 - j 2 \ 

I L (z - w) (f - w) J ƒ ' (2' - TO2 (2 - f ) H L (2 - W) (f - W) 

The coefficient of X is 

(2 - f ) 2 

\Z —• VK f — W/ Ç — w/ (z — w ) 2 ( f """" w ) 2 

hence 

tfe'df' dsdf dzdÇ 

V~~^ ~ ^T)2 ~ ^~^7(7r^' 
Multiplying this by 

ZfW) - 'snnf = Êk?(«) - gnnf, 
i= l *=1 

and integrating, we get a power series expansion in X, begin­
ning 

1 f f A r -.2 <&'#' 

r I ZtW)-W)] - - - -
\acJc Je i=i (2 - f ) 2 

= (̂g*) - X— f f Èkf(s) - gf(f)]2- ^ 
ATTJGJC i=i (2 — wyiX — w)2 

Comparing with (30), we have therefore, by (31), 

n2 àzàÇ (32) r r tb*(2)-^(f)]2 

J c J c i=i [z — wy(x — wy 
By (22), this is the same as 

= 0. 

file:///acJc


244 JESSE DOUGLAS [April, 

(33) Y,Fl2(w) = 0, 

which proves that the surface Xi = dtFi(w) determined by g* is 
minimal. 

EXCLUSION OF IMPROPER REPRESENTATIONS OF THE SECOND 

K I N D . T O show now that g* cannot be constant on a partial 
arc of C, we shall first introduce into (33) the factor w2, by writ­
ing D ? = i w2F'2(w) = 0, and set f 

wFl(w) = dtwFj(w) + iSwF((w); 

and we shall then take the real part of the resulting equation, 
getting 

(34) it{WwFi(w)}2 = J2{$wF!(w)}2-

Multiplying (21) by w and then expressing in terms of polar 
coordinates, we have w = peia, z = eid; and, separating out the 
imaginary part, we find 

1 r 2p(l - p2) sin (0 - a) 
(35)SwFÏ(w) = - - ÏÏ^^\I»^(^Ö. 

2w J c [l — 2p cos (0 — a) + p2J2 

According to a result of Fatou [30 ], the limit of this harmonic 
function as w approaches a boundary point eiB exists as a unique 
value and is equal to the derivative dg*(d)/dd at every point 
where this derivative exists and is continuous. 

Since, by the hypothesis which we are trying to disprove, 
g*(0) is constant on a partial arc of C, it follows thatQwF' (w) 
= 0on this arc, fori = l, 2, • • •, n. Hence, by (34),9îwJF/ (w) = 0 , 
also for i = l , 2, • • • , n, on the same arc. Consequently 
wF/ (w) = 0 on the arc, for i= 1, 2, • • • , n. This enables us to 
conclude that wF/(w) = 0 , (i = 1, 2, • • • , w), since, by Schwarz-
ian symmetry, involving inversion in C, the arc can be made 
interior to a domain of regularity of the function. 

Thus Fi(w) would reduce to a constant, and consequently 
also gi*y the boundary value of dlFi(w). But we have assumed 
that g* is constant only on a partial arc of C, the possibility of 

t Of course, there should be no confusion of i, the index that runs from 1 
to n, with i, the square root of —1. 
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a degenerate representation having been previously ruled out 
by the condition of three distinct fixed points on T and C 

The contradiction thus exhibited completes the reasoning. 
The minimizing representation g* of A (g) is proper, and the 
minimal surface determined by it is therefore bounded by I \ 
This solves the Plateau problem for any contour T with finite 
m(T). 

ARBITRARY JORDAN CONTOUR. T O treat the case m(T) = + <x>, 
we represent the contour T as limit of a sequence of contours T 
with finite fn(T)f for instance, polygons. Let Xi=fi(t) be the 
equations of F , #*=ƒ*(/) of T; then fi(t)—>fi(t). Each contour Y 
has a parameter d solving the Plateau problem for F , 6 being 
derived from t by a monotonie continuous transformation 
/ = /z(0). The sequence of monotonie transformations /z, by the 
compactness of the set of all such transformations, contains a 
convergent subsequence, with limit a proper or improper mono-
tonic transformation /=/x(0). We thus obtain a certain repre­
sentation of r in the form 

*i = gi(fi) = f Mo)), 

where g»(0) is the limit of a sequence of Plateau representations 
o f I \ 

*i = ii(ft) =fMo))> 

If Xi = dlFi(w) and Xi = dt"Fi(w) are formed respectively from 
g, g by the Poisson formula (18), then evidently, with F'(w), 
F'(w) given by (21), we have F / (w)—>F/ (w), for the integrand 
remains uniformly bounded for any fixed value of w. Since 
during the limit process we have always 53? M 1 F / 2 (w)=0 , it fol­
lows that 

(36) Î X , 2 ( « 0 = 0 . 

I t remains to prove that Xi = gi(0) is a proper representation 
of T. The condition (36) having been established, the reasoning 
gone through just previously, based on Fatou's theorem and 
Schwarzian symmetry, applies to rule out improper representa­
tions of the second kind. The possibility of a degenerate repre­
sentation is excluded by restricting the monotonie transforma­
tions /z to leave fixed three chosen distinct points of the unit 
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circumference, as can be done without harm to generality by 
use of a linear fractional transformation of the unit circle into 
itself, this involving three arbitrary constants. 

However, the possibility of an improper representation of 
the first kind cannot now be excluded by the argument given 
for the case of finite m(T) : that then A (g) = + <x>, for here A (g) 
is identically + <x>. To rule out this type of improper representa­
tion, we now show that it is inconsistent with (36). 

In an improper representation of the first kind there is a 
point P on the unit circumference where the vector function g 
has unequal one-sided limits, the distinct points (a*) and (&»•) 
of T. Without loss of generality we may rotate the unit circle 
till P i s at w = l. 

We next invert the unit circle with respect to an orthogonal 
circle whose center 0 is on the radius to P prolonged, f This 
inversion, combined with a reflection in the real axis, gives a 
transformation 

aw + j8 
(37) w' = — , 

yw + ô 

which converts the unit circle into itself, and converts the func­
tions Ft(w) into new ones which evidently still obey the rela­
tion (36). 

If now 0 is made to tend to P , it is seen that the transforma­
tion (37) tends to spread the values of g just below P over the 
whole upper semi-circumference and the values just above P 
over the whole lower semi-circumference, so that gi tends to the 
function equal to ai on the upper semi-circumference and to bi 
on the lower. 

Consequently, by formula (13), Fi(w) tends to the function 

1 /• T eie + w 1 r2T ei9 + w 
Gi(w) = — I ai dB H I h dB 

2wJ o e%e — w 2TJW eld — w 
(38) 

ai — bi 1 + w 
= — log i 

-Kl 1 — W 

At the same time FJ (w) tends to G'(w), and X^= i^ ' 2 ( ^ ) t o 

^ r = i G / 2 (w). But, as calculated from (38), 

fSee [11], p. 305. 



I933-] PROBLEM OF PLATEAU 247 

(39) ±G{*{w) = - - ±(a< - bù*.—!-—, 

which is T^O, since the points (at-) and (&*) are distinct, f Thus 
we have contradiction with the fact that in the limit process in 
which 0—>P the condition XXiF / 2 (w) = 0 is always obeyed. 

LEAST AREA. Having taken the Weierstrass formulas as 
definition of minimal surface, we have not concerned ourselves 
in the preceding account with the least area property of the 
minimal surface M whose existence has now been established. 
It is, however, a fact that M has the minimum area of any 
simply-connected surface bounded by r [ l l , §26; 15]. 

This statement is significant only in case the minimum area 
w ( r ) is finite. But even when m(T) = + °°, there is still a good 
sense in which the least area property is had by the surface M. 
Let T' denote any closed contour on M having no point in 
common with the boundary V. Then the area enclosed by T' on 
M is finite and an absolute minimum with respect to all simply-
connected surfaces bounded by T' [14]. That is, the infinite 
part of the area of M lies, so to say, altogether on its boundary. 
If r p denote the contour on M corresponding to the circle of 
radius p < l concentric with the unit circle, then as p—»1 the 
area enclosed on M by Tp becomes infinite in at most the order 
of (1 — p)~3; in fact, if Ap denote the area intercepted on M by 
rp , then, f o r a l l p < l , we have 

3TTZ>2 

( 4 0 APS- > 
(l - Py 

where D denotes the length of the diagonal of any rectangular 
parallelepiped containing the contour T. 

6. Conformai Mapping. To get the Riemann mapping theo­
rem for Jordan regions together with the Osgood-Carathéodory 
theorem concerning the behavior of the map on the boundaries 
is merely a matter of putting n = 2 in the preceding work. 

Let the plane Jordan curve T bound a region R. Then, by the 
foregoing theory, there exists a topological correspondence be­
tween T and the unit circumference C that gives a parametric 
representation of T of the form 

f Here again, use is being made of the condition tha t the contour has no 
double points. 
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(41) xi = gi*(z), x2 = £2*0), 

such that the functions 

z + w dz 

2ri J c 
Fl(w) = g l *( 2 ) 

_ . . . . „ z — w z 
(42) 

z + w dz 
I f 2 + 

F,(w) = — *,*(*) 
liriJc z — 'c ^ — w z 

obey the condition 

F(2(w) +Fp(w) = 0, or Fliw) ± iFi (w) = 0. 

We have seen in §1 that this implies that the functions 

(43) xi = »Fi(w), *2 = 9tFj(w) 

are conjugate harmonic, or that 

(44) W = xi + ix2 = F(w) 

is a monogenic function of w. As such, it is therefore expressible 
in terms of its boundary values on C in the form 

£*(*) = £i*(«) + ^2*(s) 

by the Cauchy integral formula 

(45) F(w) 
27rf J c z 

g*(z)dz 

The equations (44) and (45) are merely combined forms of (43) 
and (42). 

Because the transformation (44) converts the unit circum­
ference in a one-to-one continuous way into T, it follows, by 
an important theorem of Darboux,f that it converts the in­
terior of the unit circle into the interior R of V in a one-to-one 
manner and conformally, without singular points. The mapping 
theorem of Riemann is proved. 

To obtain now the theorem of Osgood and Carathéodory re­
quires only the simple observation that the formulas (42) and 
(43) which define the conformai map are equivalent to Pois-
son's integral, which has the well known property of attaching 

t Osgood, Funktionentheorie, 1923, p. 377. 
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continuously to its boundary values g*(z) and g*(z), if these are 
continuous, as they are. 

For any contour T, it is easy to show that the minimum 
value of A (g) is equal to the area of the minimal surface M de­
termined by g*. Therefore, in the case of a plane Jordan curve 
bounding a region i?, 

(46) min A (g) = inner area of R. 

The inner area means the upper bound of the areas of all poly­
gons which, with their boundaries, are interior to Rj This re­
mark made, we can now summarize the results of this section 
in the following proposition. 

Let r denote any plane Jordan curve bounding a region R, and 
let Z = g(z) denote an arbitrary representation of T, locus of Z, as 
topological image of the unit circumference C, locus of z. The 
range of values of the functional 

A ( g ) = - * ( * ) - * ( « I 7— - r 2 
ATJCJC (Z - f)2 

when all representations g are considered will consist exactly of 
all positive real numbers ^ the inner area of R. This minimum 
value is attained for a certain representation Z = g*(z) (deter­
mined up to linear fractional transformation of C into itself). 
Then the transformation w—>W defined by the integral formula of 
Cauchy, 

2iri J c z — w ' 

establishes a one-to-one conformai map of the interior of the unit 
circle on the region R, and this conformai map attaches continu­
ously to the topological correspondence g* between T and C. 

7. Dirichlet Principle. The implications for the Dirichlet 
problem of the results just stated are apparent. The Dirichlet 
problem for any continuous distribution of assigned values on 

t To be distinguished from the outer area, lower bound of the areas of all 
simply-connected polygons whose boundaries are exterior to JR. The first ex­
ample of a Jordan curve with inner area less than outer area, or where the 
curve itself has a positive area, was given by Osgood, Transactions of this 
Society, vol. 4 (1903), pp. 107-112. 
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any Jordan curve is reduced to the same problem for the circle, 
and therefore solved immediately by Poisson's integral. 

I t will be observed that the proof of the Dirichlet principle 
thus given consists in introducing instead of the Dirichlet func­
tional £>(#), against which the Weierstrass objection applies 
(the range of the argument [<j>] is not compact), the functional 
A(g) which, on the contrary, is amenable to immediate treat­
ment according to the Weierstrass-Fréchet pattern. 
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