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NOTE ON THE GRADIENT OF THE 
GREEN'S FUNCTION* 

BY G. C. EVANS 

1. Integral of the Gradient of the Green's Function. The author, 
in 1929, t mentioned without proof the fact that for a bounded 
open simply connected plane region T the integral 

KM) = f | Vg(M, P) I dvp, 
J T 

where Vg(M, P) denotes the gradient of the Green's function 
with pole at M, is bounded, independently of the position of M 
in T. A corresponding result holds for convex regions in three 
dimensions. It is the purpose of this note to bring out some of the 
differences between the two- and three-dimensional situations by 
a comparison of the analyses for the general plane simply con­
nected region and the star-shaped three-dimensional region. 

THEOREM 1. Let T be a bounded open simply-connected region 
in the plane, g(M, P) its Green's function with pole at M, and 
I(M) =fT \Vg(M, P) \d<Tp. Then 

(1) I(M) < {2irTgyi\\ - <rO~S 

where g is an arbitrary positive number and T stands for meas. T\ 
in particular 

(10 I{M) < 2.216(TTy\ 

For a given M the level curves of g(M, P) are simple closed 
analytic curves, and neither g(M, P) nor its gradient vanishes 
at a point of T. Denote by h(M, P) the function conjugate to 
the Green's function, by ds the element of arc of the level curve 
s of g(M, P ) , and by dn the element of arc of the normal tra­
jectory n, taken as positive in the direction towards M. The 
integral I(M) is evidently convergent. 

The Jacobian J = d(x, y)/d(g, h) has the value 

* Presented to the Society, August 31, 1932. 
f Evans, Discontinuous boundary value problems of the first kind for Pois-

son's equation, American Journal of Mathematics, vol. 51 (1929), pp. 1-18. 
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/dn\2 /ds\2 , , d(x, y) /dn\2 

and if u+vi = w(z) =e~(°+hi) transforms the region T into the 
interior of the unit circle in the ze/-plane, the value of the Jacob 
ian J = d(x, y)/d(u, v) is 

(3) 
<?(*> y) 
d(u, v) 

dz 

dw 

/dnY 
w 

for dw/dz = —wd(g+hi)/dz = — w (dg/dx — idg/dy), and dg/dn 
= \dw/dz | / | 

Hence if y is any positive number, pi = e~y, and p, 6 are polar 
coordinates in the w-plane, 

(4) 

where 

(4') 

with 

(4") 

•ƒ in 
J (P<1) I W I 

= Il + h, 

dz 

dw 
dudw 

•» 1 • » 27T 

J * J 
•/ o •/ o 

<W 

/ i -ƒ, 

-J. 
( 0 < 7 ) l ^ 

If? 

J(7 

da = f/Wip, 
•/ o 

M = f 
J 0 

2lr 1 Js 

dw 
dB. 

Now by Schwarz's integral inequality, using (2), and writing 
T for meas. T, we have 

A S f (— ) d<r- f à < r f rfgd* < 2irTy, 
J (g<y)\dn/ J (g<y) J (g<y) 

and 

(5) 7i < (2irTyyiK 

But by Hardy's well known theorem/(p) is a non-decreasing 
function of p, for dz/dw is holomorphic in |w | < 1. Hence 
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h à / ( p i ) ( l - P i ) , / , Û / ( P i ) p i . 

Consequently 

h (27rT7)1/2 

f(pi)û- < \ 
1 — Pi 1 — pi 

and 

(50 72 < ( 2^7» 1 / 2 P l = (27rr7)1 / 2——— • 
1 - Pi 1 - e~y 

From (5) and (5') we have (1), denoting y by g. 
In particular, we may choose g so as to make the right-hand 

member of (1) a minimum, for this expression is positive and 
becomes infinite as g tends to 0 or oo. In fact, the derivative of 
g1/2(l — e~°)~l vanishes at one and only one positive value of g, 
corresponding to the positive solution of the equation e° = 1 +2g. 
We calculate 

g = 1.256, pi = 3.512-1 = .285, 

whence we have (1'). This completes the proof of the theorem. 
In particular, if T is a circle and M is at the center, we have 

I = 2(wT)1,2
1 by direct calculation, a result which is near enough 

to (1') to suggest an interesting problem in the calculus of 
variations. For the circle of unit radius, M being distant a, 
a < l , from the center, we have JT = 7r[(l— a2)/a] log [ (1+a) 
/ ( l — a ) ] , and in fact / i s maximum when a = 0. 

2. Corollaries. The following remarks follow as corollaries. 
The integral I(M), from (2), takes the forms 

(6) I(M) = I sgdg = I nhdh, 
J o •/ o 

so that again, each of these quantities is bounded, independently 
of the position of M, in accordance with the theorem. 

Moreover s0 is an increasing function of p = e~°* In fact, 
s0=f\dz/dw\d(pO) = pf(p), which is strictly increasing, since 
f(p) is non-decreasing. From (5) therefore, gsg<Ii<(2TTg)l/2 

and 

* W. Seidel, Über die Randerzuordnung bei konformen Abbildungen, Mathe­
matische Annalen, vol. 104 (1931), pp. 182-243. 
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/ 2 7 r r y / 2 / 2TTT y 1 ' 2 

V g / \ - log p / 

Similarly, from the inequality on / (p ) , we have the sharper 
inequality 

(70 s0 < {2irTgyi\e° - \)~K 

Finally, f(p) =27rsg/cpt where cp is the circumference of the 
circle of radius p = e~°, and therefore 

(8) / = 2TT f — dPl 
J o £p 

where v ^ p is a non-decreasing function of p. 

3. Three-Dimensional Case. For a three-dimensional region 
T, which is homeomorphic with the interior of a sphere, the 
function g(M, P) is defined by the methods of Harnack, but its 
gradient may vanish at some interior point even if the boun­
dary of T is normal with respect to the Dirichlet problem, f The 
level surfaces would not then necessarily be homeomorphic with 
the surface of a sphere. For the theorem which follows, we re­
strict ourselves merely, however, to a region T, bounded and 
homeomorphic with the interior of a sphere. 

THEOREM 2. Let F be the set of points M of T from which T is 
star-shaped. Then F is null or closed with respect to T. Let 
I(M) =fT \Vg(M, P) \drP. Then for all points of F 

(9) I ^ 4.76(7r2r)1/3 ^ 47rg-1 + {^gT)ll\ 

where g is an arbitrary positive number. 

In particular, if T is convex, F= T and (9) holds for all points 
of T. 

We prove that F is closed with respect to T by proving that 
the complementary set in T, namely T—F, is open. Let ikfbe a 
point of T—F. Then, by definition, there is a point Pof jTsuch 
that the segment MP contains a point, say Q, not in T. Con­
sider the lines through Q, and let TM, T~P be spherical regions, 

* J. J. Gergen, Mapping of a three dimensional region on a sphere, American 
Journal of Mathematics, vol. 52 (1930), pp. 197-224. 

t J. J. Gergen, Note on the Green f unction of a star-shaped three dimensional 
region, American Journal of Mathematics, vol. 53 (1931) pp. 746-752. 
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with centers M and P and radii pM and pP, respectively, small 
enough to lie entirely in T. Given p P we can choose pM small 
enough so that every line through Q and a point of rM passes 
through a point of rP. This will be the case if pM< PP' (MQ/QP). 
Hence every point of T— F is an interior point of T— F. 

4. Proof of Second Part of Theorem 2. In order to prove the 
remainder of the theorem, let T' be a bounded simply-con­
nected region whose boundary is normal with respect to the Dir-
ichlet problem, and let M be a point of T' such that VgT*(M, P) 
does not vanish for P in T'\ this will be the case, in particular, 
if T' is star-shaped from M. Such a region may be mapped on 
the interior of a unit sphere in a one-one manner in such a way 
that the level surface g(M, P) = g goes into the concentric sphere 
of radius p = l / ( l + g ) , and the normal trajectories to the level 
surfaces go into the radii of the sphere; the mapping is not con-
formal, but on the other hand, again unlike the plane case, it 
reduces to the identical transformation as p tends to zero.* 

Hence if we consider the cone of trajectories abutting on an 
element dSa of the ^-surface, which subtends a solid angle dœ 
at M and the corresponding element of surface dCp on the sphere 
of radius p = 1/(1 +g), we have 

dg dg dS0 dn 
— dS g = dœ = dCp ; = > 
dn dp dCp dp 

instead of dSg/dCp — (dn/dp)2
} which would be the case if the 

transformation were conformai. We have 

= d(n, Sg) = /dn\2 

(10) d(g,u) \dg/' 

\d(n,Sg)\ 1 /dn\2 1 dn dSg 

I d(p, ui) I p2\dgj p2 dg dœ 

and 
f% Aq /* (In (* *" S 

(11) I(M) = y J r = —dg dœ = 47T - ? d p , 
JT'dn ^(0<g<(X)dg J o Cp 

* J. J. Gergen, American Journal of Mathematics, vol. 52, loc. cit. The 
identity (dg/dn)dSg = dco is established by Gergen in the as yet unpublished 
part of his Thesis (Rice Institute, 1928). With the mapping already set up the 
demonstration is not difficult. 
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with similar forms for the two integrals I\ =f(g<y) (dg/dn) dr and 
Ï2~f(ff>y)(dg/dn) dr, y being a positive number. 

Analogously to the plane case, we have 

l\ < T f I — ) da = V f dg dœ = ^nT\ 

consequently 

(12) h < (iwyT)1'2. 

But for the treatment of 72 we cannot follow the earlier method, 
since f(p) =4:7rS0/Cp is not now necessarily a non-decreasing 
function of p. 

In fact, if T' is a sphere of radius a and r = (x2+y2+z2)112, 
M being at the origin, we have g(M, P) = l / r — 1/a, and cor­
responding values of r and p are given by the relation 1/r — 1/a 
= l / p — l, so that 

Sa r2 ( 1 - a V 2 

which is an increasing function of p if a > l , but a decreasing 
function if a<l. In the plane, the corresponding expression for 
two circles is independent of p. 

Let us suppose, however, that Tf is star-shaped from M. In 
this case the g-surfaces are homeomorphic with spherical sur­
faces, are analytic and enclose regions which are star-shaped 
from M; moreover* 

I Vg(M, P) | > g/r, r = MP. 

But g(M, P) = 1/r — v, where v is a harmonic function positive in 
I1', so that l/r = v+g>g; consequently 

\vg(M,P)\ >g2. 

I t follows, then, that 

72= f TdT= f (T) 1&W*S 
J (9>y) dn J (g>y)\dn/ 

g~2dg = 47T7*-1. 

* J. J. Gergen, American Journal of Mathematics, vol. 53, loc. cit. 
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This, with the inequality already obtained for Iu gives 

I < 47T7"1 + (47r7r01 / 2 , 7 > 0, 

for all points M from which T' is star-shaped. The minimum 
value of this expression occurs for 7 = 2(2w/T)1/3, from which 
the value in the second member of (9) is obtained, namely, 
7<3(47T2r)1/3 . 

We note, incidentally, that from the values of dS0 and dn, 
already given, we obtain 

I(M) = f Sadg = f tf„dco, 

S0 being the total area of the ^-surface and iVw the total length 
of the trajectory originating at M in the angular element dœ. 

5. Boundary of T not Normal. We may pass now to the 
theorem for T, whose boundary may not be normal for the 
Dirichlet problem. I t may be remarked, nevertheless, that the 
presence of an irregular boundary point very much restricts 
the nature of the set F. 

Let M be a point of F, r = MP, Q the point where the ray r 
cuts the unit spherical surface with center M, P' the first point 
where it cuts the closed boundary set T—T. Then (following 
Gergen) r'= MP' is a lower semi-continuous function of Q on 
the unit sphere, r'=f(Q). We have, then, f(Q) =limn==oo/n(0, 
where the fn(Q) may be chosen as a strictly increasing sequence 
of continuous functions; in fact, the choice may be made so 
that we hdLvefn+l(Q)-fn(Q) >l/n-l/(n + l) = l/(n2+n). For n 
great enough the regions Tn\r<fn(Q) contain M and are 
(evidently) star-shaped from M. But each fn(Q) may be re­
placed by a function <j>n(Q), as regular as we please, such that 
uniformly \fn(Q) — <t>n{Q) \ S l/(2n2 + 2n) ; in fact, such a func­
tion 0n((?) may be obtained by averaging fn(Q), more than once 
if necessary, over a circular neighborhood of Q on the unit 
sphere, the radius of the neighborhood being a constant 8 chosen 
suitably small.* 

Thus we obtain a strictly increasing sequence <t>n(Q) which 
defines a sequence of regions 7V, such that TV is contained in 

* For the properties of approximations in average consult H. E. Bray, 
Proof of a formula f or an area, this Bulletin, vol. 29 (1923), pp. 264-270. 
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Tn-i. These regions are star-shaped from M, have boundaries 
which are regular with respect to the Dirichlet problem and, for 
n great enough, contain any given closed subset of T. In fact, 
limn==oo0n(Q) =ƒ((?). If gn(M, P) denotes the Green's function 
for Tn , we have, uniformly in any closed subset K of T—M, 

lim gn(M,P) = g(M,P), 
n— » 

lim | V gn(M, P) | = Vg{M, P), PinK. 
n= oo 

But for n large enough so that K is contained in 7V , we have 

f | Vgn(M, P) | drP < 47T7-1 + (47T777)1/2 < 47T7"1 + (47r7r)1/3, 
JK 

7 an arbitrary positive number. Hence 

f | Vg(M, P) | drP ^ 47T7-1 + (4:<iryTy'2, 
J K 

and finally, 

f | Vg(M, P) | drP S 47T7-1 + (47T7r)1/2. 
J T 

This completes the proof of Theorem 2. 
For the sphere of radius R, with M at the center, we calcu­

late 

7 = 4 ^ = 2(Ó7r2r)1'3 = 3.63(irar)1 /8 . 

T H E R I C E INSTITUTE 


