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point of ac with a point of b and join a point of ab with a point 
of c. Let Xi in ab, x% in ac, be the points where this line meets 
these spaces. The line then contains x, x\, x2 all in a, where al­
though xi and #2 might coincide, neither could be x. But then 
the line would lie wholly in a, contrary to hypothesis. Hence 
x(ab+ac)=0, and (2) is established. Likewise y cannot be in 
ab + bc. For if it were then #+3/ would be in a+ab + bc = a + bc, 
contrary to hypothesis. Thus (4) is established, and (6) follows 
similarly. Hence for a to fail to be distributive in the second 
sense implies Case A. Conversely given Case A, then a fails to 
be distributive with respect to b and c in the second sense. In­
deed y will then be in a + b and also in x+y which is in a+c. But 
y will not be in a + bc. For y is in b, but not in ab + bc, hence not 
in ab nor be, hence not in a nor be. If y were yet in a+bc, there 
would be a point u in a, and a point v in be such that y would be 
in u+v. But y and v are then distinct and are both in b. Hence 
u+v is in b, and u is in b. Hence u is in ab. Hence y would be in 
ab + bc contrary to hypothesis. Hence Case A is a necessary and 
sufficient condition that a fail to be distributive with respect to 
b and c in the second sense. 

Since Case B is necessary and sufficient for a to be distributive 
with respect to b and c in the first sense and again also in the 
second sense, Theorem 1 is proved. Since this Case B is sym­
metric in a, b, and c, Theorem 2 is proved. 
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1. Introduction. Various non-tentative methods of factoring a 
given odd number N, based on the expansion of N112 in a regular 
continued fraction, have been described4 The success of most 
of these methods depends on the appearance of a perfect square 
among the denominators of the complete quotients. In practice, 
however, such an event occurs all too infrequently. More often 
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it happens that the product of two or more denominators is a 
square. In this case two methods are available for obtaining a 
factorization of N. These methods are described and compared 
in the present paper. 

Sometimes a denominator Qn of the nth complete quotient 
has a prime factor in common with N. This factor appears also 
in the numerators of the nth and (n + l)st complete quotients, 
and is recognized by inspection. We are therefore justified in as­
suming that as far as the expansion has been carried out, the 
numerators and denominators of the complete quotients are prime 
to N. Under this assumption we prove that the two methods de­
scribed below will both fail or both succeed in a given instance. 
We also show in §5 that a natural a t tempt to modify and com­
bine the two methods is doomed to failure. 

2. The Method Using the P's. In expanding the square root 
of N in a continued fraction we have for the general form of the 
nth complete quotient 

xn = (Pn + N^)/Qn, (*o = Nl>\ [xn] ~ qn). 

From the familiar relation Pi -}-QnQn-i = N, we have 

(1) -QnQn-l^Pn* (mod N) . 

For n = 1 this becomes — <2i^=Pi2, since Ço = 1, and for w = 2 w e 
get 

Q2P* = i Y (mod JV). 

In general, if we write ( — l)wQn = (?n*, we have 

(2) Qn ( P n - 1 * Pn-Z ' Pn-5 ' ' ' Pr)2 = (Pn ' Pn-2 ' Pn-4 ' ' ' Pa)2 

(mod N), 

where r = l, s = 2 or r = 2, 5 = 1, according as n is even or odd. 
To prove this, we assume that (2) is true for n — 1, or 

(3) Qn-i(Pn-2' Pn-V Pn-t ' ' ' Pa)2 = (Pn-l ' Pn-Z ' Pn-h * ' * Pr)2, 

and then show it true for n as follows. Multiplying (1) by 

( P n _ l - P w _ 3 • • • Pr)
2 • ( P n - 2 * -Pn-4 ' ' ' Pa)2, 

and dividing by (3), we get (2). But we have shown above that 
(2) is true for n = 1, 2; hence it is true in general. 
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Two Q*'s are said to be equivalent if their product is a square, 
tha t is, Q-* is equivalent to Çj*if x2Qi* =3>2Qj*. From this equa­
tion we have by substituting n—i and n=j in (2), and noting 
that i and j are of the same parity, 

(4) (xPi+vPi+z • • • P^Y - (yPi+rPi+i • • • Pj)2 s 0 (mod N). 

Unless N divides either (xPi+i'Pi+z • • * Pj-i) ±y(Pi+2-Pi+i • • • 
Pj), we obtain a factor of N by finding the G.C.D. of N and one 
of these numbers. If the two equivalent Q*'s are near each other 
in the series of denominators, the factors of N will be disclosed 
with a minimum of effort. 

This method may be extended to the case in which the prod­
uct of more than two Q*'s is a square. This involves a straight­
forward application of (2) as we illustrate later, and the ease 
with which the method may be applied depends again on the 
relative position of the Q*'s and on the parities of their sub­
scripts. I t is of course unnecessary to compute the actual prod­
ucts of the P's involved, since these products may be reduced 
modulo N. 

3. The Method Using the A's. If An/Bn is the nth. convergent 
to Nl/2, we have the well known relation 

AnU - NB*-! = ( - lYQn = 0»*, 

which can be written 

(5) Qn*^AU (modtf). 

Hence if <2** and Q,-* are equivalent, so that x2Qi* =zy2Qj*1 then 

(xAi-d* - (yAj^y s 0 (mod N). 

Unless N divides either xAi^i + yA^i it is possible by the 
greatest common divisor process to obtain a factorization of N. 
In the same way more than two Q*'s may be used. For example, 
if x2Qi*Qi*=y2Qk*9 then 

(xA^Aj^y - (yAk^y = 0 (mod N). 

The A's are of course calculated by the familiar recurrence 

(6) An = qnAn-i + An-2, 04-2 = 0, A-X = 1), 

and when necessary the A's may be reduced modulo N. 
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4. Comparison of the Methods. The two methods are best com­
pared by a numerical example. Consider the case N= 13290059.| 
The elements for N112 are as follows. 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

Pn 

0 
3645 
389 
2868 
3352 
3253 
2897 
1881 
2201 
1937 
2673 
2659 
2007 
1963 
2791 
2994 
745 
2661 
2808 
3122 
2853 
1457 
1134 
3499 
3507 
878 
1977 
1309 
2214 
2548 
3162 
2603 
3047 
3334 
2800 
2531 
1343 

Qn* 

1 
-2-2017 
3257 

-5-311 
1321 

-2-52-41 
2389 

-2-13-157 
2069 

-2-5-461 
31-43 

-2-2333 
5-397 

-2-2377 
13-89 

-3739 
2-13-131 

-1823 
5-593 

-5-239 
2-5-431 

-2591 
41-113 

-2-113 
5-877 

-5-571 
2-31-53 

-13-271 
2381 

-5-571 
1153 

-2-52-113 
709 

-3067 
1777 

-2-13-149 
5-593 

qn 

3645 
1 
1 
4 
5 
3 
2 
1 
2 
1 
4 
1 
2 
1 
5 
1 
1 
3 
2 
5 
1 
1 
1 
31 
1 
1 
1 
1 
2 
2 
5 
1 
9 
2 
3 
1 
1 

,4„(mod N) 

3645 
3646 
7291 
32810 
171341 
546833 
1265007 
1811840 
4SSS6S7 
6700527 
5110677 
11811204 
2152967 
674112 
5523527 
6197639 
11721166 
1490960 
1413027 
8556095 
9969122 
5235158 
1914221 
11415773 

39935 
11455708 
11495643 
9661292 
4238109 
4847451 
1895246 
6742697 
9419283 
12291204 
6422718 
5423863 
11846581 

t This number is a factor of 254903331620, which in turn is the 55th term 
of the sequence 276, 396, 696, • • • , in which each term is the sum of the 
aliquot parts of its predecessor. 



774 D. H. LEHMER AND R. E. POWERS [October, 

The easiest method of factoring N is to apply the P method to 
the equal denominators Q2S — Q29— —2855. For this case (4) 
reduces to 

( i V i V ) 2 - (P27-P29)2 s 0 (mod N). 

The G.C.D. of iVand P26• P 2 8 - P 2 7 • P29 is found to be 3119, and 

N = 13290059 = 3119-4261. 

Similarly it is found that Ql8 =*Qz6 = 2965, and the factors of 
N can be obtained in the same way, but with more effort, since 
these Q*'s are 18 terms apart and hence more P ' s are involved. 
Also Q23 = — 2 • 113 is equivalent to Q3l = — 2 • 52 • 113, from which 
the factors of iV may be found. 

The case in which three Q*'s are involved is illustrated by 
Q>*, 0*2 and <2*3, where the difference 5-PiP 4 P»-113-PiP8P« 
has the factor 3119 in common with N. In each of these instances 
the A method is applicable. In the last case, for instance, we 
can write 

(5-^2i-^22)2 - (113-^4)2 3 0 (mod N), 

from which the factors of N follow. This example shows the ad­
vantages of the P method when two equivalent Q*'s appear 
near each other. When this is not the case, however, the method 
using the ^ s is more expeditious since the calculations are 
simpler. 

We now show that the ease of application is the only deciding 
factor in choosing one of the two methods. To do this we make 
use of the following lemma. 

LEMMA. If n is any integer, then 

Pn + ( - l ) M n _ ^ w _ 2 ES 0 (mod N). 

PROOF. For n = 0f 1, 2 this is true, though trivial. Supposing 
the lemma is true f or n — 1, we show it true for n itself as follows : 

We have by assumption 

Pw_x + ( - iy-iAn_2An-B SE 0 (mod N). 

Adding and subtracting Qw_igw_i and using the recurrence 

(7) Pn — Qn-lÇn-1 "~ Pn-l, 
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we find 

0 = Pn-l - Qn-iqn-1 + ( ~ l ) n ~M n _2^n-3 + Qn-lÇn-1 

= - Pn + ( - l)n-lAn-2(An-Z + An^qn-i) 

S - Pn+ ( - l ) ^ - 1 ^ ^ ^ ^ ! . 

That is 

P n + ( - l)nAn^An.2 s 0 (mod JV), 

which is the lemma. 

THEOREM 1. The success of one method in a particular instance 
implies the success of the other. 

PROOF. For simplicity the proof is given for the case of two 
equivalent <2*'s. I t can be easily amplified to cover the general 
case. Let Qi* and (?,•* be equivalent, so that 

*>Qi* = :v2Ö/*. 

Suppose now that the A method succeeds and that the P 
method fails. Then N will divide either 

(8) \xPi+\' Pi+z' Pi+h ' ' ' Pj-l) i y(Pi+2' Pi+4' Pi+Q ' ' * Pj)> 

Substituting for each P its value in terms of the A's as given by 
the lemma we have, after simplifying, either 

xAi-i ± yAj-i = 0 (mod iV).f 

This implies the failure of the A method contrary to hypothe­
sis. Therefore the P method succeeds. 

By reversing the argument we may show that the success of 
the P method implies the success of the A method. This is done 
without using the assumption of §1 that the P's are prime to N. 
Hence we may restate Theorem 1 in a more precise form as 
follows. 

The only instance of the success of one method and the failure of 
the other is that in which the A method succeeds, the P method fails, 
and a factor of N appears among the P's and Qys.% 

t The ± signs do not necessarily correspond to those in (8). 
t An example of this instance is offered by iV=611, Q6 = Q8=17. Of course 

both methods fail when N is a prime, but the failure of either method should 
not be taken as an indication of the primality of N. 
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5. Simultaneous Use of Both Methods. Since each method finds 
a square to which Qn* is congruent mod N, one is naturally 
tempted to use both methods with any fixed Q whatsoever to 
obtain a t once a difference of squares divisible by N. Unfortu­
nately we have the following result. 

THEOREM 2. The two different methods for obtaining squares 
congruent to a particular denominator Qk* will not give a factoriza­
tion of N if used together. 

PROOF . By the P method we have 

(9) Pi-vQk* =* Pi-Qt-t. 

This follows by writing (2) for n=k and n = k — 2 and taking 
their ratio. By the A method we have for the same Qk* 

(10) Q^^Ai^ (modtf). 

Eliminating the Q*'& from (9) and (10), we have the desired 
difference of squares 

PUt-z - Pi-iAi^ = 0 (mod N). 

But we now show that N always divides the sum 

(11) iVU-3 + P*-iii*-i. 

In fact this sum, in view of (5), (6) and (7), is congruent to 

g*_ii4*_2{-P*-i + ( - l ) * - 1 - ^ * - * ! ^ } • 

By the lemma with n = k — 1, the quantity in brackets is di­
visible by N, hence N divides the sum (11). 

Factorization is therefore possible only if N has a factor in 
common with the difference 

Ak-iPk-i — Ak-zPk* 

Such a factor would be common to 

i4*-iP*_i - Ak-zPk + (Ak-iPk-i + Ak-sPk) = 2Ak-iPk-i. 

But N is odd and prime to the P's and Ç's, and, from (5), to 
the A'sj hence the theorem. 
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