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QUADRATIC ADDITION THEOREMS FOR
EVEN FUNCTIONS*

BY J. D. GRANT

The purpose of this paper is to show that if an even function
be expansible in power series in some region about the origin,
and satisfy a quadratic addition{ theorem, the function is a
linear fractional transformation of the Weierstrass “P” function
or one of its degenerate forms.

P. D. Edwards}f has shown that addition theorems are sym-
metric in U= F(x) and V' =F(y). He has also shown the most
general form of an addition theorem linear in W=F(x+y). In
this paper, equations quadratic in W are treated by means of
the following theorem.

THEOREM 1. An addition theorem for an even function is sym=-
metric in the three variables U, V, W.

For one may set

x+y=s, W =F(x+ y) =F(s) = U,
x=s+1¢t U=F(x) =F(s+¢) = W,
y=—1t V =F() =F(—1) =F@) = V.

Thus the equation, which is known to be symmetric in U, V,
is shown to be symmetric in U, W so that the theorem follows.

In the same manner one easily proves the following com-
panion theorem for odd functions.

THEOREM 2. An addition theorem for an odd function is sym-
melric in the three variables U, V, —W.

* Presented to the Society, April 3, 1931.

t An algebraic addition theorem is a polynomial relation between F(x),
F(y), and F(x-+7y), with constant coefficients. For this paper the polynomial is
irreducible. Weierstrass made addition theorems the basis for his study of
elliptic functions. Osgood, A llgemeine Funktionentheorie, 1912, vol. 1, pp. 580—
595; Forsyth, Theory of Functions, 1918, Chapter XIII; Hancock, Theory of
Elliptic Functions, 1910.

1 Abstract No. 8, this Bulletin, vol. 35 (1929), p. 453. The paper is avail-
able at the University of Indiana Library.
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This theorem is illustrated by tan x and ctn x, but the form is
lost for sin x and Jacobi’s sn x, whose addition theorems are
symmetric in U?, V2, W2,

The equation whose solution we wish to study is the follow-
ing, symmetric in the three variables U, V, W:

(1) ao+ ai(U+V+ W)+ ax(UV + UW + VW)
+ a3(U% 4+ V2 4+ W2 + a,UVW
+ as(UV2 4 UV 4 UW2 4 U2W 4+ VW2 4 VW)
+ as(UV2 4 UW?2 + VW2 + a; UVW({U 4+ V + W)
+ asUVW UV + UW + VW) + aU?V* W2 = 0.

This may also be written in powers of W as
2) R(U, V)W? — 2R (U, V)W + R3(U, V) = 0,

where Ri, Rs, R; are of degree not more than two in U or V.

Since we are dealing with even functions, changing y to —y
alters only W. Hence the two roots of this quadratic are
W =F(x+7y), F(x—7y), and by the ordinary theorems regarding
symmetric functions of the roots one has

(3 F(x+ y) +F(x — ) = 2Rs/Ry,F(x + y)-F(x — y) = Re/R1.

Thus two other interesting types of functional equations are
seen to arise naturally and will be solved when R;, Rz, R; are
quadratics symmetric in U, V.

It has been shown* that, if the first term of the power series
expansion of F(x) is not a constant, there is in the functional
equation a group of terms which form an equation having the
first term of the series as a solution. Since first terms of the form
¢, n< —2,0or n>2,would require the vanishing of all the co-
efficients ¢ in (1), we have to consider only three possible first
terms, c_sXx~2, co, Cox?. In case the first term is ¢, one writes

U= U+ c

and the first term for U; will be c,x2. In case the first term is csx?,
one writes

U=1/U

* The author in American Mathematical Monthly, vol. 37, p. 70.
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and the first term for U’ will be c_sx~2. The transformed equa-
tion in Uy, Vi, Wi, or U’, V', W’ will still be of type (1). Hence
we see that any solution of an equation (1) is a linear fractional
transformation of a solution of a type (1) equation, whose series
expansion begins with c_sx~2, ¢_25#0. For this reduced case,
equation (1) contains the terms of the addition theorem for x—2
as its terms of highest degree and they must enter with a non-
zero multiplier (chosen as unity). This gives our equation (1) as
a0+ ar(U+V+W)+a(UV+TUW VW) + as(U2+ V24 W2)
+ a, UVW + as(UV2 4 UV +UW?2 4 UW + VW2 + V2W)
+ U2V2 4 UW2 + VW2 — 2UVW(U +V + W) = 0.

The solution has the expansion

1
U=F(x)=—x—2+60+62x2+c4x4—|—-~,

For x=v, the roots of (2) become
F(2x), F(0)=o, and Ry(U, U)=0,
so that as=a;=0. Equation (1) is further reduced to
4) a0+ a(U+V + W) + as(UV + UW + VW) + aUVW
+ U224 UW2 4 VW2 — 2UVW(U +V 4+ W) =0.
Equation (4) is invariant in form under the transformation
U= U’+tand the cubic term becomes (a,—12{) U'V'W’. When
t=a4/12, equation (4) becomes, if we omit accents,
(5) bo + b1(U + V 4+ W) + b2(UV + VW + UW)
+ U2+ UW2 + VW2 — 2UVW(U + V + W) = 0.
If we set x =7y in (5), substitute the power series for the solu-

tion, and after collecting terms equate to zero the coefficients of
each power of «x, the first four conditions on ¢; are:

x~8: ¢ = 0,
x4 10¢c — b2 = 0,
a2 28¢s — b1 = 0,
%% 2bg 4+ 21bscs — 90¢# — 510¢s = 0.

(6)
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Again if we set y =2x in (5) and make the same computation,
there results:

x78: co = 0,
x4 10¢c; — by = 0,
x72: 28¢4 — b1 = 0,
20 18b¢ + 289b2c; — 1210¢¢ — 6390¢cs = 0.

The conditions (6) and (7) require for consistency that
4by=>#. To complete the proof one notices that if by=g;/2,
bi=gs, bo=0¢ /4 =g# /16, the equation (1) has been reduced by
means of linear fractional transformations to the well known

addition theorem* for P(x; gs, g5). In this connection the degener-

ate forms of P(x; g, gs) should be taken as (2/3+ctn?x) and
x~2, as these have ¢, =0.

It will be seen from a study of the addition theorem for
P(x; g, gs) that every second-degree addition theorem having
an even solution may be written

R,(UV) = RU'V’
- Ry(UV)

where U’ and V' are the derivatives of U and V with respect to
x and y respectively.

)

JamMEs MILLIKIN UNIVERSITY

* Since the addition theorems give rise to the differential equation by a
direct computation, (see Forsyth, p. 357), it is one of the many ways of defining
the P function.



