A REMARK CONCERNING THE NECESSARY CONDITION OF WEIERSTRASS*

BY E. J. MCSHANE†

Let us consider a class \Re of rectifiable curves C lying in a point set A of n-dimensional space, and an integral $F(C) = \int_C f(x, x') ds$, where $x = (x^1, \dots, x^n)$ and s connotes that we use the length of arc as parameter. Suppose that a certain curve C: x = x(s) minimizes F(C) in \Re , and denote by L the set of points of C which are interior to A and of indifference with respect to \Re and A. Then for almost all points of L we have $E(x(s), x'(s), \bar{x}') \ge 0$ for all sets of numbers \bar{x}' . Given now a particular point $x(s_0)$ of L; when can we say that the inequality holds at $x(s_0)$?

It has already been shown \S that the inequality holds if $x'(s_0)$ exists, $\Sigma[x^{i'}(s_0)]^2 > 0$, and the $x^{i'}(s)$ are all approximately continuous at s_0 . We will now show that the inequality also holds if $\Sigma(x^{i'}(s_0))^2 = 1$. (As is well known, this sum never exceeds 1, and is equal to 1 almost everywhere.)

Suppose then that $\sum [x^{i'}(s_0)]^2 = 1$ and that in contradiction to our statement there exists an \bar{x}' such that $E(x(s_0), x'(s_0), \bar{x}') = -2k < 0$. Denote by $\alpha(s)$ the angle between x'(s) and $x'(s_0)$. The function

$$\phi(s) = \frac{d}{ds} \left[\sum x^{i}(s) x^{i'}(s_0) \right] = \sum x^{i'}(s) x^{i'}(s_0)$$
$$= \left\{ \sum \left[x^{i'}(s) \right]^2 \right\}^{1/2} \left\{ \sum \left[x^{i'}(s_0) \right]^2 \right\}^{1/2} \cos \alpha(s)$$

is defined for almost all values of s, and $|\phi(s)| \le |\cos \alpha(s)|$. By the continuity of E, we can find positive numbers ϵ , δ such that $E(x(s), x'(s), \bar{x}') < -k$ for all s such that $|s - s_0| \le \epsilon$, $\phi(s) \ge 1 - \delta$; and if ϵ be small enough, x(s) will be in L. But $\phi(s_0) = 1$ and $\phi(s)$

^{*} Presented to the Society, April 3, 1931.

[†] National Research Fellow.

[‡] L. Tonelli, Fondamenti di Calcolo delle Variazioni, vol. 2, p. 87. E. J. McShane, On the necessary condition of Weierstrass, etc., Annals of Mathematics, vol. 32.

[§] E. J. McShane, loc. cit.

is a derivative; therefore* there exists on $[s_0 - \epsilon, s_0 + \epsilon]$ a set of positive measure for which $\phi(s) > 1 - \delta$, "..., which contradicts the theorem quoted above."

OHIO STATE UNIVERSITY

A CORRECTION AND AN ADDITION

BY G. E. RAYNOR

- 1. A Correction. In a former paper† by the author the minus sign on the right side of equation (4), page 888, makes the notations of equations (4) and (5) for the function G inconsistent. This difficulty may be removed by changing the sign of G throughout the paper wherever the first argument of G has r_1 in the denominator. This change makes the first footnote on page 888 superfluous and it should be deleted. The second argument of G in equations (9) and (20) should be 0 instead of θ .
- 2. An Addition. The mean value of the function Φ over the circle C_2 was considered, in the paper, for the case of the singular point P outside of C_2 and for the case of P inside of C_2 . The question naturally arises as to what the situation is in case P lies on C_2 . This third case is not, however, of much interest since the integral

$$\int_{C_a} \Phi ds,$$

which is now in general improper, will not in general exist. This may readily be verified for the function

$$\Phi = \left(\frac{r^2}{r_1^2} - \frac{r_1^2}{r^2}\right) \cos 2\theta$$

integrated over the circle C_2 , whose equation is $\rho = r_1 \sin \theta$. It will be found that even the principal value of the above integral is infinite while of course the value of Φ at the center of C_2 is finite.

LEHIGH UNIVERSITY

^{*} Hobson, Theory of Functions of a Real Variable, vol. 1, §403.

[†] On the extension of the Gauss mean-value theorem to circles in the neighborhood of isolated singular points of harmonic functions, this Bulletin, vol. 36 (1930), pp. 887-893.