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SOME THEOREMS ON PLANE CURVES
BY W. V. PARKER

In applying Abel’s theorem to hyperelliptic integrals, we are
interested in the intersections of certain curves with a curve C
of the type y2=f(x), where f(x) is a polynomial. The functions
used in the following are all polynomials of degree indicated by
their subscripts. If f,(x) =f(x)f+—x(x) we may without any loss
of generality assume that #» =%k =#/2 and this assumption will be
made throughout.

LemMA. If C s the curve y2 =f,(x) =fi(%)for(x), 1 the curve
y=fiu(x) and c; the curve y=f, (x), then all the finite points of
intersection of ¢, and c: are on C, and the curve S whose equation
is y = [fu(®) +Ffar(x) /2 is tangent to C at each of these k points.

Suppose («, B) is any one of the k points of intersection
of ¢; and c¢;; then B=fi(a) and B=f._r(a) and therefore
B2 =fr(a)fnr(c) =fn(a), thatis (a, 8) ison C. Obviously .S passes
through the & points of interesection of ¢; and ¢; and hence meets
C in these k points. Eliminating y from the equations of .S and
C we get

[fk(x) _+5 fn-k@]z_ Fu@) (@) = [Uﬁ):z_f—k_(x_)]= .

as the equation giving the abscissas of the 2k points of inter-
section of S and C. Since the left hand side of this equation is a
perfect square each abscissa is counted twice, and therefore
since, in S, y is a one-valued function of x, S is tangent to C at
each of these k points.

As an immediate consequence of this lemma we have the fol-
lowing result.

THEOREM 1. If C is the curve y*=.(x), where Pn(es) =0,
(=1, -+, n), and (a, B), (B#0), is a point on C, and c is the
curve of the form y=¢i(x) determined by (o, B) and any k of the
points (e;, 0), and ¢z is the curve of the form y = ¢pn_r(x) determined
by (@, B) and the remaining n—k of the points (es, 0), then c1 and
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cs have all their k points of intersection™ on C, and the curve S whose
equation is y = [¢i(x) +dn_r(x) /2 is tangent to C at each of these
k poinis.

Since ¢,(x) =¢r(x)pn_i(x) for n+1 values of x, we have
én(x) =dr(x)pn_r(x) and the theorem follows from the lemma.

That all curves S of the form y=g;(x) which are tangent to a
curve C of the form y?=g,(x) at each of k points can be obtained
by this process, is a consequence of the following theorem.

THEOREM 2. If (s, B:), (i=1,2,-- -, k), are k points on the
curve C whose equation is y? = g,(x) such that there exists a curve S
of the form y =gy (x) which is tangent to C at each of these k points,
and if the curve ¢, whose equation is y=h(x) meets C in the k
points (o, B:) and the point (ey, 0), where e\ is any zero of g.(x),
then hi(x) is a factor of g.(x).

Since S is tangent to C at each of the & points, the equation

22 (x) —g.(x) =0 has the roots au, s, - - -, ai, each counted
twice, and since ¢; meets S in the %k points («;, 3;), the equation
2i(x) —hi(x) =0 has the roots oy, @, - - - , Q.

We have therefore
[gx(2) — hu(2) |? = u[ga?(2) — ga(®)],

and hence
[ex(er) — m(e)]® = uler?(a) — gul@)];
but Zx(er) =g.(er) =0, hence u=1, and we have
g (%) — 2gu(%) hi(x) + (%) = gi*(x) — ga(®),

or
gn(®) = hi(x) [2g1(x) — hi(x)].

If ¢, is the curve y=ax*+awx* 14 - - - +ar_1x+a, deter-
mined by the & points (o, 8;) and one of the % points (e;, 0), the
coefficient @y may be zero and the degree of the right hand side
less than k. For suppose we choose a particular one, say ei, of

* Only finite points of intersection are considered here. In certain special
cases when # is even and k=4$#n, ¢; and ¢; may coincide or they may have less
than k finite points of intersection. The lemma and Theorem 1 are still true for
these cases when finite points of intersection are considered.
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the zeros of g.(x) and find that the expression on the right is of
degree k; then it will have as zeros k of the zeros of g,(x), say
ey, €, + + +, ex. Then the curvey=>box*+bix* 14 - -« +br_1x+by
determined by the k points (a;, 8;) and one of the remaining
points (e;, 0), say (ex+1, 0), will have its right hand side of degree
n—k at most. For suppose the right hand side of degree
m>n—Fk; then it will have as zeros m of the zeros of g.(x) and

and hence at least one of the e, e, - -+, e; and therefore
ax* a1+ - - - +ap=bex*+bx* 14 - - - +b, for at least
k+1 values. But since byx*-+bix*~14 - . - +b; has at least one
zero which is not a zero of apx*+ax**+ - - - +a; this is im-

possible. It follows as a consequence of Theorem 1 that the de-
gree of the right hand side is either & or » — k depending on which
zero of g.(x) is chosen for determining the curve c;.

If in the above the degree of %(x) is k, the degree of 2g;(x)
—hi(x) will be n—k; if we denote the latter by h,_i(x), we
shall have g,(x) = [, (x) +%a_i(x)]/2. That is, the curve S is
y=[hi(x) +ha_r(x)]/2, where the curve y="7h;(x) is determined
by some k of the points (e;, 0) and one of the points (o, 8;), and
the curve y =#,_(x) is determined by the remaining # — & of the
points (e;, 0) and the same one of the points (e, 8:).

Thus far it has not been necessary to say anything about the
nature of the zeros e, ez, - - - , e,. When these zeros are distinct
we have the following theorem.

THEOREM 3. The number of curves of the type y =gi(x) which
are tangent to a curve C of the type y*=g.(x) at any fixed point
(e, B) and at B—1 other points, is C; for k>n/2 and 1C; for
k=mn/2, provided that the zeros of g.(x) are distinct.

For by Theorem 1 we get a curve of this type corresponding
to any k of the zeros of g,(x) and by Theorem 2 all curves of
this type are obtained by this process. It must be shown, there-
fore, that when & >#/2 the same curve cannot be obtained from
two different sets of % zeros of g.(x). Suppose y=¢;(x) and
vy =¥1(x) are both of degree k and cut out the same set of % points
(aiy Bi) on C; then ¢y(x) and y,(x) must have at least one zero
in common and therefore ¢x(x) =y, (x). If n is even and k=37,
then each set of & such points is cut out by two and only two of
these curves by Theorem 1.

From Theorem 1, the ordinary construction for drawing a
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tangent to a conic at a point P on it, when the axes and vertices
are known, follows immediately.

The following example is a rather interesting illustration of
Theorem 1. Let C be the curve

y? = fo(x) = — 8 4 14x* — 4922 + 36.

The zeros of fe(x) are 1, —1, 2, —2, 3, —3. Let the curve
c1:y=f3(x) be determined by (0, 6) (1, 0) (—1, 0)(3, 0) and
the curve c;:y=g;(x) be determined by (0, 6) (2, 0) (—2, 0)
(—3, 0); then we have

fs(x) = 2a% — 622 — 22 + 6,
gs(x) = — 2% — 322+ 2x + 6.
These curves ¢; and ¢; meet on C in three points whose abscissas

are 0, (94+/241)/10, (9—+/241)/10. The curve S whose equa-
tion is
y = Jfs(x) + ga(x) 3 15

O =3 — 2246
2 4 4

is tangent to C at each of these three points.

If we take for ¢; the curve y =gy(x) determined by (0, 6), and
for ¢, the curve y=g¢(x) determined by (0, 6) (1, 0) (—1, 0)
(2,0) (—2,0) (3,0) (—3,0), we get

(=6 me)=——rts- g
x) = 6, X)) = ——x »r—-—x .
80 g 6 3 6

The curves ¢, and ¢; are each tangent to C at each of the three
points (0, 6) (\/7, 6) (—+/7, 6) and the curve S whose equation
is

_ go(x)igs(x) 1 7

6 4 4 49 246
= ——xt+—x*——x
2 12 6

Y

meets C four times at each of the three points.
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