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ON T H E JOIN OF TWO COMPLEXES* 

BY A. B. BROWN f 

1. Introduction, Notations are as in Lefschetz's colloquium 
Publication.% Where not otherwise specified, cells and spheres 
are combinatorial. 

In Chapter II of Lefschetz I the join of two complexes is de­
fined, and it is proved that the join of two cells, or of a cell and 
a sphere, is a cell. We shall prove that if the given cells are 
normal, the join is likewise normal. In the later part of the 
paper we obtain formulas for the Betti numbers of the join of 
any two complexes. 

2. The Join of two Cells. 

THEOREM 1. The join of the closures of two normal cells is the 
closure of a normal cell. 

PROOF. Since Lefschetz proves§ that the join is a cell, it 
remains only to prove that it is normal, that is, the join of a 
point and a sphere. 

Let A and B denote the closed cells. Since they are normal, 
we may consider them to be located in a euclidean m-space; 
composed of simplexes; each having only one interior vertex, 
called Ca and Cb respectively; and such that {A, B) consists of 
A, B and the points on non-intersecting line segments, called 
elements, joining the points of A to the points of B. 

In Lefschetz I, pp. 112-113, it is shown that (A, F{B)) and 
{F{A), B), locus of the chain boundary of (A, B), constitute a 
sphere. We shall call them the boundary of (A, 5 ) , and the re­
maining points the interior of (A, B). Let C be an interior point 
of {Ca, Cb). We shall prove that {A, B) is the join of C with the 
boundary. 

* Presented to the Society, February 28, 1931. 
f Part of the work on this paper was done while the author was a National 

Research Fellow, at Princeton University. 
% S. Lefschetz, Topology, New York, 1930. (Lefschetz I.) 
§ Lefschetz I, pp. 111-112. 
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Let P be any point on (A, B) not C itself. We shall prove: 
(1) interior points of (P, C) are interior points of (A, B)\ (2) 
if P is an interior point of (A, B), then (C, P) can be continued 
in a straight line beyond P in the interior of (A, B). 

CASE I : P is an interior point of (Pa, P&), where Pa and P& 
are points of A and B distinct from Ca and Cb, respectively. 
Now Ca, Cb, Pay Pb must determine a non-degenerate tetrahe­
dron, since if they lay in any 2-plane we could find two non-
identical elements having a common interior point. From the 
construction of a tetrahedron as the join of either pair of op­
posite edges, it follows that interior points of (C, P) are interior 
points of the tetrahedron, consequently are interior points of 
joins of pairs of points one on the interior of each of the seg­
ments (Cay Pa) and (Cb, P&). Since such points are interior 
points of (A, B)y we conclude that (1) is proved. 

In case P is an interior point of (A, B), then Pa and P& must 
be interior points of A and B, respectively. Hence we can find 
points Pa and Pb on A and B, respectively, such that Pa and 
Pb are interior points of (Ca, Pa) and (Cb, Pb), respectively. 
Then P will be an interior point of the tetrahedron determined 
by Cay Pa, Cby Pb I and since (C, P) consists of points in the 
interior of that tetrahedron, we conclude that (2) is valid. 

CASE II : All other cases. The proofs here are simpler, due to 
the fact that we have to deal with triangles at worst, instead of 
tetrahedrons as in the case just considered. Hence we omit the 
details. 

From (1) we conclude that the interior points of the segments 
joining C to points of the boundary of (A, B) are themselves 
points of (A, B), and none of them is obtained more than once 
by the process. From (2) and the fact that (A, B) is in a 
bounded part of m-space, we infer that all the points of (A, B) 
are obtained in this way, that is, on joins of C with points of the 
boundary of (A, B). Since this boundary is a sphere, it follows 
that 04, B) is the closure of a normal cell; that is, Theorem 1 is 
proved. 

3. The Join of a Cell and a Sphere. 

THEOREM 2. The join of a sphere and the closure of a normal cell 
is the closure of a normal cell. 

PROOF. Let S and E denote the sphere and the closed cell, 
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respectively. As above, we take them composed of simplexes 
in a euclidean w-space, such that E has only one interior vertex 
and (5, E) consists of the points on the line segments joining 
points of S with points of E. The locus of the chain boundary of 
(5, E) is (S, F(E)), a sphere,* which we shall call the boundary 
of (S, E). All other points of (5, E) will be called interior 
points. 

Let C be the interior vertex of E, and P any point of (S, E) 
other than C itself. From this point the proof continues as in 
the case of Theorem 1. In Case I, P is an interior point of 
(P s , Pe), where Ps is a point on S and Pe is a point on E distinct 
from C. In Case II, P is either on the join of C with a point of 
5, or on E. In both cases the proofs are simpler than the cor­
responding proofs for Theorem 1, involving triangles at worst. 
We shall give no further details. 

4. Betti Numbers of the Join of two Complexes. 

THEOREM 3. Given complexes A and B,letA i, Bi, P%, J% denote 
the ith Betti numbers of A, B, their product and their join, re­
spectively. Then\ 

o 
Ji = Pi-i — Bi-i — Ai-i + ôi_i, i ^ 1; 

Jo = 1. 

These formulas hold also for Betti numbers mod p, p any prime 
greater than unity. 

PROOF. Let A and B be regularly subdivided, and images 
composed of simplexes taken in a euclidean space so that (A, B) 
is obtained by joining the points of A to the points of B by 
straight line segments, called elements. We introduce an addi­
tional coordinate, say z, keeping the other coordinates of the 
points of A and B fixed, and place A in the hyper plane z — 1 
and B in the plane z— — 1. Let C denote the intersection of 
{A, B) with the plane z = 0. 

Let A\ denote the part of (A, B) for which s2^0, and B\ the 

* Lefschetzl, p. 112. 
f o,-*' = 1 or 0 according as i —j or i ^j. 
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part for which 3 ^ 0 . Then we have, from Lemmas 1, 2, 4 and 6 
in an earlier paper,* the following equalities: 

(1) Ri{Ax) = a' + ci« + C6«; 

(2) RiiBt) = b* + ci* + Ca'; 

(3) Ri(C) = a* + cj + cj + cj; 

(4) RM,B) = a* + i ' + ^ + Cd*-1. 

Now a1 is the maximum number of i-cycles on A\ that are 
independentt of the i-cycles on C. Any i-cycle on A i is homolo­
gous to one on A, since it can be deformed onto A along the 
elements. We can then deform the resulting f-cycle along the 
elements joining A to a single point of B, as far as the locus 
2 = 0, that is, up to C. Consequently every i-cycle on Ai is 
homologous to one on C. Therefore a* = 0. By symmetry, 
&* = 0. 

Any i-cycle on C can be deformed first onto A along the ele­
ments, then to any point of B along the elements joining A to 
that point of B. Since cf is the maximum number of i-cycles on 
C which are independent on Z), we conclude that cf =0 , for 
i ^ l . Since (A, B) is connected, Ci° = 1. 

The locus C is a homeomorph of the product of A and B. 
Hence Ri(C)=Pil under our notation.J Since A\ can be de­
formed onto A along the elements, it follows from Theorem 2§ 
of our paper cited above that R%(Ai) =Ri(A). By symmetry, 
2e<CBi)=u<CB). 

By substituting the values just obtained in (1), (2) and (3), 
and then substituting from (1), (2) and (3) in (4), we obtain 
the first relation of Theorem 3. The second is a consequence of 
the fact that (A, B) is connected. 

COLUMBIA UNIVERSITY 

* A. B. Brown, Relations between the critical points of a real analytic f unction 
of n independent variables, American Journal of Mathematics, vol. 52 (1930), 
pp. 251-270. The lemmas in question, stated for Betti numbers absolute and 
mod 2, hold also for Betti numbers mod p , where p is any prime greater than 
unity; as do the proofs. The meanings of some of the symbols are explained 
below. 

t Independence refers to homologies. 
t See Lefschetz I, Chap. 5. Pi =52r+s-iArBs. 
§ This theorem holds for Betti numbers mod m, m any integer greater than 

unity. The proof is easily modified to cover this case. 


