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GEODESIC COORDINATES OF ORDER r*
BY A. D. MICHAL

1. Introduction. Let I’iﬁ be a general symmetric affine
connectiont and T's,..5, (r=3, -, p), the sequence of the
first p — 2 generalized symmetric affine connections defined by
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and in general by the recurrence formula
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The law of transformation of the affine connection I“Ufﬁ is,
as is well known,
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while the generalized affine connections transform in accordance

with the law§
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where the [ | denotes the sum of terms, each of which involves
a component F;..,,., with less than $ subscripts, that vanish
with P;a, e, T;m.,,g.

2. Fundamental Theorems.

* Presented to the Society, December 30, 1929.

t We assume that the reader is conversant with the tensor theory as pre-
sented by O. Veblen in his Inveriants of Quadratic Differential Forms, Cam-
bridge Tract, 1927.

1 O. Veblen and T. Y. Thomas, Transactions of this Society, vol. 25 (1923),
p. 561.

§ T. Y. Thomas, American Journal Mathematics, vol. 50 (1928), p.
518.
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THEOREM 1. 4 mnecessary and sufficient condition that a co-
ordinate system y' determined by a coordinate system x* and a
point xi=q as origin have the property that Tig, Tigy, - - -,
Tigy...c all vanish at the origin yi=0 when evaluated in the yi
system of coordinates is that
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for xi=gt

If a star over a function denotes the evaluation of that
function in the preferred system y? we obviously have
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where the [ ] on the right hand side of (2) denotes the sum of
terms, each of which involves a component *I'}. ., with less
than p subscripts, that vanish with *T'/,, - - -, *T; 5 It is
obvious now from (2) that a necessary and sufficient condition
that

(*Tegdo = 0, (*Tap)o =0, -+, (*Tag..t)o = 0

is that conditions (1) hold at the origin x=gqg".
DEFINITION. A coordinate system y* for which
(*I‘:ﬁ)o = 03 (*P;ﬂxﬁz)o = 0; ] (*P:ﬂlﬂz“'ﬂr)o =0
will be called a geodesic coordinate system of order r.

THEOREM 2. A geodesic coordinate system y' of order r for
which
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s defined implicitly by the coordinate transformation
PR T [P
¥ =gty = S(Taa(@))eyy? = —(Tasn(@)yy?yr = - -
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where ' is a regular power series™ in y* which begins with powers
of ¥' at least as great as r+2.

Successive differentiations of (3) and evaluations for yi=0
together with an application of Theorem 1 establishes our
theorem.

From now on we shall deal exclusively with geodesic coordi-
nate systems of the particular type considered in Theorem 2.

THEOREM 3. If
T = fi(xly ) xn)

is an arbitrary analytic transformation of the coordinates x°,
then any two geodesic coordinate systems of order r, v and ¥,
with the same origin x*=q', that are determined by (3) and
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(r+1)!( p1---8,(Z))z 75 B + wi(9)
respectively, are related by the transformation
(4) yi = ( ) 3% + Ni(y)
9x2/,

where Nt is a power series in y* that begins with powers of y* not
less than r+2.

To prove this theorem we observe first that

* We shall understand that y*=0 is an admissible case,
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) dy*  OF dx* 9y
On solving the equations (3) for y® in the neighborhood of
x=g* we obtain

yi=gi— gi + bi

where the A* are power series in x?—g* beginning with the
second degree terms in xi— g% Similarly

(©) R

where %* involves terms in &‘—g‘ of higher order than the
first. Hence, evaluating (5) at the common origin of the pre-
ferred coordinate systems y* and 7%, we obtain

@ G- Go,

on making use of the relations

dut ; 9y’ .
G- (o)==
9y*/ a9z

By a similar method we also obtain the result

Go)= Gx)
35%/4 oze/;

The formulas that connect the components of the affine con-
nection and the first 7—1 generalized affine connections in the
coordinate system y* with those in the coordinate system ¢ are
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+[ ](?=3,4,"',1’+_1),

where the [ ] stands for a sum of terms that vanish with all the
*I'q...s in which the number of indices o, - - -, 6 is less than p.
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Evaluating (8) at the common origin of the coordinate
systems y° and §* we obtain

(9) < el ) 0, (p=23 + 1)
— ] =, = Ly Oy eyt .
ayal. .. aydp 0 P

Our theorem then follows immediately from this result and the
relations (7).

3. Applications. Let T :i(x) be the components of a ten-
sor and *T%-Y(y) the components of the same tensor in a
geodesic coordinate system y* of order r with origin at xi=g".
A set of functions 7% , ;of %!, - - - ,x"atan arbitrarily given

point x*=gq* will be defined by

g+ b

i O
IO (@) = (2
T e = (20

THEOREM 4. The functions TS '} .. (% -+, x") for a
fixed k(=7r) are the components of a tensor.

Let y* and %' be geodesic coordinates of order r with x=g?
as their common origin. By hypothesis

ay° ayd ay= 65"’
ayY 85 ay*  ayb

—a B, a b
*Tyos(9) = *T....a(y)
Hence by differentiation and Theorem 3, we have

—a-eef, a---b
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where [ ] denotes the sum of a set of terms that vanish at the
common origin of the coordinate systems y¢and . By Theorem
3, we see that

(ayi> ~ (W’) (63’") (ax‘>
ayile  \owi/,’ 95i/y  \owi/i’
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If then we evaluate (10) at the origin and make use of the above
relations in the resultant expression we obtain the law of
transformation of a tensor evaluated at an arbitrarily given
point. The proof of our theorem is therefore complete.

It is to be observed* that the tensor T¢ 3} . is the first af-
fine extension (covariant derivative) of the tensor 7¢ ) while
T%:Y ... is the kth affine extension of T2:)

Similar results hold good for the extensions of the affine
connection I'js. For example, the set of functions

6"*1‘;,5

—_—— =<
ay‘h e ay‘m, (k - 7),

evaluated at the origin of a geodesic coordinate system y¢ of
order r+1 define the kth normal tensor Aiaﬂ.,l,,,.,k. Thus the
replacement theorems for affine differential invariantst of
order 7 can be proved on the basis of geodesic coordinates of
order r-+1 without any hypothesis as to the existence of
partial derivatives of the components of affine connection of
higher order than the rth. Finally the replacement theorems for
metric differential invariants] of order # can be proved on the
basis of geodesic coordinates of order » without any hypothesis
as to the existence of partial derivatives of the fundamental
metric tensor g.s of higher order than the rth.

CALIFORNIA INSTITUTE OF TECHNOLOGY

* The proofs of these statements are left for the reader since they are
obtained by an obvious modification of Veblen’s normal coordinate methods.
See Veblen and Thomas, loc. cit., pp. 569-573.

t T.Y. Thomas and A. D. Michal, Annals of Mathematics, vol. 28 (1927),
pp. 196-236

1 T.Y. Thomas and A. D. Michal, Annals of Mathematics, vol. 28 (1927),
pp. 631-688.



