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{n2} of {n) such that n = rii+n2 + 2 is an {n-l}, the Vf-i^2 

is a { r - l } in { r } , for T=T' + T" + 2. Hence, we have 

N - k + 2 = 1, 
or 

iV = * — 1, 

which was to be proved. 
I t is about impossible to state generally any proposition con­

cerning the properties of the hypersurfaces of this type. The 
properties of some of them can be obtained readily. 
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Two algebras 31 and S3 over the same field F are called 
equivalent (or simply isomorphic) if it is possible to establish 
between their quantities a (1-1) correspondence such that if 
any quantities x and y of 31 correspond to X a n d F of S3, then 
x+y, xy and ax correspond to X + F, XY, aX respectively for 
every a of F. We shall consider two generalized quaternion 
division algebrasf 31 and S3 over the field of all rational numbers, 
R. Let 31 be given by 

(1) 21 = (e9iiji,iji), h2 = pie, ji2 = cne, jih = - i i i i , 

where e is the modulus of 31, and pi and <r\ are in R. Without 
loss of generality pi and <ri may be taken to be each products of 
distinct rational prime integers. 

Similarly let 

(2) S3 = (E,IUJUI1J1), h2 = P2E, J2
2 = a2E, JJl = - IJU 

* Presented to the Society, February 22, 1930. 
t For the definition and properties of these algebras see L. E. Dickson, 

Algebren una ihre Zahlentheorie, pp. 46-49. 
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where P2 and a2 are each products of distinct rational prime 
integers, and E is the modulus of 53. Without loss of generality 
we may take cr2<0 since one of p2,<T2, — p2<r2 is negative and by 
changing the roles of Iu J h I\ J\ we may take a2 to be the nega­
tive number. The rank equation of 2t is known (loc. cit.) to be 

(3) co2 — 2a4co + (a4
2 — oil2 pi — a2

2ai + a^aipi) = 0, 

where the general quantity of 21 is x=a^+aiii+a2ji+asiiji. 
We have obviously the following property 

LEMMA 1. A quantity x which is not a rational multiple of 
e has a rational multiple of e as its square if and only if 

(4) x = aih + a2ji + «3*1 j i , 

in which case 

(5) x2 = (ai2pi + a2
2ai — a3

2o-ipi)e. 

Consider the form 

(6) q = <*i2pi + a2
2<Ti — afaipi — a4

2p2 — ab
2<r2. 

The signs of pi, m and —picn are the same if and only if p i<0 , 
cri < 0. But we have taken a2 < 0, whence — a2 > 0 and has a sign 
different from that of pi < 0. The signs of the coefficients of q are 
therefore not all alike and they are all different from zero when 
21 and 33 are division algebras. But every indefinite quadratic 
form in five variables is a null form* so that there exist integers 
a i , - - - , «5, not all zero, for which q = 0. Let «12, a22y • • •, «52 
be any set of integer solutions of q = 0. The quantity p / = «42P2 
+a5

2
2(T2 is a rational integer equal to a^pi+ce^^i—«L^iPi-

The quantities 

i' = ai2ii + a22ji + «32^/1, / ' = «42/1 + «52/1 

have the properties that 

(»')•" = j/e, (I'Y = P'E. 

Since «12, • • • ,«52 are not all zero, i ' and V are not both zero 
quantities. Hence p ' ^ 0 . But 21 and S3 are division algebras 

* A theorem of A. Meyer, Vierteljahrschrift der Naturforschenden Gesell-
schaft in Zurich, vol. 29 (1884), pp. 209-222; see also Bachmann, Zahlentheorie, 
vol. IVi, p. 266. 
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so that i'?*0e, I'^OE. If we write p ' = p7r2, where p and ir are 
integers and p is a product of distinct primes, then, by replac­
ing t h e a r 2 ( r = l , • • • , 5) byari = 'Xr2/^y we replaced' by i*=i'/ir, 
V by / = / , / x a n d p / by p. 

L E M M A 2. There exist rational numbers a n , a 2 i , è • •, «51 with 
ot\u «21, «3i not all zero and a4i , a5i wo/ both zero, such that if 

(7) i = an i i + a2iii + «siH/i, 7 = «4i/i + «51/1, 

then 

(8) i2 = pe, I2 = p £ , p = 0U1P2 + c4i<r2, 

w/^re p is a product of distinct rational prime integers. 

Write / = I i J i . Then obviously JI= —IJ and J2 = ôE, ô in 
R. By replacing ƒ by a rational multiple of itself we may ob­
viously take S a product of distinct primes. If 0:21 —otn = 0, then 
by writing j=ji, we have ji= —ij and j2=ye with 7 in 2?. If 
ex21 and a3i are not both zero, then let 

(9) j = anpiji + oc2iiiji 5* Oe, 

whence ƒ = — <ripi(a2
2l — a2

npi)e = ye wi th 7 in R. 

Using the multiplication table of 81, we find 

ji = («3iPiii + où2iiiji)(anii + OLnji + a3i*iji) 

(10) = — a3ianpiii.7i + a3iO!2ipicri — aipnh 

— « 2 i a n P l i l + «2lCTlii ~ CLl\a%\p\<I\ 

= («21^1 — «3iPi ) i i — «iiûJ2iPiii — « s i a i i P i i i i i » 

while 

— if = — (anii + a2iji + ctniiji)(anpiji + Wiiiji) 

(ID , . . , . 2 . ^ 2 . , 
= — (aiia3iPi*i.7i + ana2iPi^i — c^io^i + azipKWi) . 

Hence ji— —ij and in all cases j is not a polynomial in i with 
rational coefficients. I t follows that e,ij,ij are linearly inde­
pendent with respect to R and form a basis of SI. Similarly 
EJ,JyIJ are linearly independent with respect to R and form 
a basis of algebra 93. 
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THEOREM 1. By finding a single solution of a solvable diophan-
tine equation we may represent any pair of generalized quaternion 
division algebras in the canonical form 

(12) 21 = (e,i,j,ij), i2 = pe, j 2 = ye, ji = - ij, 

(13) 33 = (E,I,J,IJ), I2 = PE, J2 = ÔE, JI = - / / , 

with e and E respectively the moduli of 21 and 33, where p, y and 
ô are multiplication constants expressed in terms of the original 
multiplication constants of 21 and 33 and the above solution, and 
where, without loss of generality, p, y, S may be taken to be pro­
ducts of distinct rational primes. 

We shall now discuss a necessary and sufficient condition 
that any two generalized quaternion division algebras 21 and 
33 be equivalent. We take the pair in the canonical form (12), 
(13). Suppose that 21 and 33 are equivalent so that there exists 
a (1-1) correspondence between the quantities of 21 and 33 
which is preserved under addition, multiplication and scalar 
multiplication. The modulus e of 21 will correspond to the modu­
lus E of 33. Let 5 in 21 correspond to / , and / correspond to / . 
Then s2 — pe, t2 = ôe and ts— —st. But, by Lemma 1, 

(14) s = \xi + \2j + X3v 

so that 

(15) s2 = (Xx2p + X2
2T - X3

27p)e = pe, 

and 

(16) Xi2p + X2
27 — X3

27P = Pi 

for rational Xi,X2,X3. Let first X2 and X3 be not both zero. Then if 

(17) h = \zpj + X2i/, 

we have / is= —sh, h^Oe, and 

(18) h2 = 7[(X3p)2-X2
2p]. 

For we may evidently use here the proof (10), (11) by which we 
showed that ji= —ij. But ts— —st, so that tst~l = hstr1 and 
(/i~1/)5(/i~10~1 = -y. It follows that t\~H is a polynomial in s and 
we may write 
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(19) / = (ft* + te)tlf (ft and ft in JR). 

Then ô* = /2 = (ft2-ft2p)/i2 = (Si2-?22p) [(X3S)2-X2
2p]Ye. Write 

r?i = £i(X3p)+ftX2p,?72=:£iX2+£2(X3p), so that 77i and T;2 are rational 
numbers. Then we have proved that, when X2 and X3 are not 
both zero, 

(20) 8 = On2 -7722p)7. 

Next let X2=X3 = 0. We have s=\ii and Xi2pe = pe so that 
Xi = l, s = i. We then take h=j and have h2~ye. As before 
^ ( f t e + f t s ^ i a n d , if we write ?7i=ft, ^2 = ^2, we again have (20). 

Conversely let (20) be true. Then 31 and 33 are equivalent 
under the correspondence 

(21) ine + fi2i + jM + mit ~ Mi^ + M2̂  + PzJ + M4//, 

where jui, • • • , JU4 are independent variables in R and 
*=0ne+i?2*)j. For *2 = p0, P = pE, t2 = öe, J2 = ÔE, ti=-it, 
JI=-IJ. 

THEOREM 2. Ze/ 21 and 33 ôe an^ /wo generalized quaternion 
division algebras over R. Then they are equivalent* if and only if, 
when they are put in a canonical form (12), (13), we have 

(20) ô = (vi2 - V22p)y 

for rational rjx and Y)Î. 

Necessary and sufficient conditions that (20) be t rue are 
known. Let the greatest common divisor of y and 5 be v so that 
yô = v2ey where e is a product of distinct primes. Then (20) is 
true if and only if 

(22) e = Tja2 - Vi2P = 0 

for rational rç3, Vt- Let the greatest common divisor of e and 
p be w so tha t e = €V, p = p V . Then (20) is true if and only if 

(23) e' = 7n?52 - p V 

* Any generalized quaternion algebra H is self-reciprocal under the 
correspondence given by i~i, j~j, ij^ji. Hence we may add the word 
"reciprocal" to the above. 
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for rational ??5 and 774, where n o w e ' ^ p ' and eVp' are each pro­
ducts of distinct primes. Then (20) is true if and only if 

(24) 7T0!2 - p'ei - e'Oi = 0 

for integer 0i, 02, 03 not all zero. For when (20) is satisfied so is 
(24) when we write T?5 = 0 I / 0 3 , 774 = 02/03 with integer 0i, 02, 03. 
Conversely let (24) be satisfied for integer 0i, 02, 03 not all zero. 
If 03 = 0 then 7T012 -p '0 2

2 =0 , 7rp'=p, so that (7T0i)2-p02
2 = 0 con­

trary to the hypothesis that 21 is a division algebra and hence p 
is not a rational square. I t follows from our definitions of 
e', 7T, p' that when (23) is satisfied so is (20). But (23) is satisfied 
by r?5 = 0i/03, 7/4 = 02/03. Hence (20) can be satisfied by rational 
771, ?72 if and only if the form in (24) is a null form. Using a 
known result of the theory of numbers*, we have the theorem : 

THEOREM 3. Let yô = v2e where v and e are integers and e is a 
product of distinct primes. Let the greatest common divisor of e and 
p be IT so that P=P'TT, e = eV. Then two division algebras 21 and 33 
in a canonical form (12), (13) are equivalent if and only if 

(25) — e'p' is a quadratic residue of TT, 

(26) e is a quadratic residue of p ' , 

(27) p is a quadratic residue of e'\ 

As a corollary of Theorem 2 we shall establish the non-
equivalence of any two of the DT algebras of L. E. Dickson (loc. cit., 
Chapter IX) which have different t's. The DT algebras have 
p = — 1 and 7 = r taken to be a product of distinct primes of the 
form 4n + 3. Let DTl and DTi be two such algebras with TIT^T2. 

Then T2?£(v? -\~V£)TI since otherwise we would have T2TI ex­
pressible as a sum of two rational squares which is impossible 
when T2TI contains a prime factor 4w + 3 to an odd power. 
Hence, by Theorem 2, DTl and DT2 are non-equivalent. 

COLUMBIA UNIVERSITY. 

* See P. Bachmann, Arühmetik der Quadratischen Formen, Chapter 8. 


