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A CORRESPONDENCE BETWEEN 
IRREGULAR FIELDS* 

BY E. T. BELL 

1. Introduction. Correspondences between fields are well 
known, and Dicksont has applied one to obtain a generalization 
of the theory of numbers. Here we give an instance of corre­
spondence between irregular fields. An irregular field differs 
from a field only in the exclusion of an infinity of elements as 
divisors, instead of the uniquely excluded zero of a field. The 
postulates for an irregular field and numerous instances were 
given elsewhere.J The correspondence is established between 
the irregular field of all numerical functions and the irregular 
field of a certain infinity of power series with radius of con­
vergence 1. For the series considered, addition and subtraction 
are interpreted as in the classical algebra of absolutely con­
vergent series; multiplication and division receive wholly 
different interpretations. The simplest instance of the new 
multiplication is the process by which, when legitimate, a 
Lambert series is derived from a given power series. 

It will be necessary for clearness to recall first a few defini­
tions and theorems. 

2. The Irregular Field IF. If £(#) is uniform and defined 
for all integral values n>0 of x, £(x) is called a numerical 
function of x. In what immediately follows, a relation involving 
n denotes the set of all relations obtainable from the given 
one by letting n range over all integers>0. 

Let a(x)} fi(x), • • • , £(x), r)(x), co(x), • • • be the set of all 
numerical functions of x, the unit function rj(x) and the zero 
function co(x) being the unique functions defined by 

(1) i?(D = 1, v(x) = 0, x* 1, 

(2) a>0) = 0. 

* Presented to the Society, April 5, 1930. 
t This Bulletin, vol. 23 (1916), p. 109. 
Î Annals of Mathematics, vol. 27 (1926), p. 511; Algebraic Arithmetic 

(Colloquium Publications of the American Mathematical Society, vol. 7, 1927). 
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By definition we assert that the two statements in each of the 
following pairs are formally equivalent (each implies the other) ; 
a(x), (3(x) are any numerical functions: 

(3) a(n) = |8(»), a = 0; 

(4) a(n) + 0 ( » ) = £(»), a + 0 = J; 

(5) aa(n) — £(n), aa = £, 

where a is a numerical constant. It is evident that aa(x) is 
a numerical function of x. Continuing, we define a/3 by 

(6) 5>(<O0(O = *(»)> «j8 = f, 

the summation extending over all (d, t) where d>0, t>0 are 
integers such that dt = n. 

The elements of the irregular field IF are a, j3, • • • , £, ry, 
co, • • • . These elements are sufficiently defined by (3). 

(7) DEFINITION. The element £ of IF is regular or irregular 
according as £ (1 )^0 or £(1) = 0 . 

(8) THEOREM. If and only if £ is regular, there exists a unique 
element £' of IF such that ££' = 77, cmd £' is regular. 

The element £' in (8) is called the reciprocal of £ (provided 
£ is regular), and we write £' = ??/£. The theorem was proved in 
a former paper,* where an explicit form of %'(n) was given. 
In §3 we state an equivalent form, which is more convenient 
in certain applications of IF, including the present. 

(9) THEOREM. With equality as in (3), addition as in (4), 
scalar multiplication {and hence subtraction) as in (5), multi­
plication as in (6), division as in (8), the set of all a, j8, • • • , 
77, co, £, • • • is an irregular field (IF), in which rj is the unique 
unit element, co the unique zero element, and the irregular elements 
are as in (7). 

3. Explicit Form of Reciprocal Let £ be an arbitrary regular 
element of IF, Write £(1)=£, ££' = ?7; so that p^O and £' is 
the reciprocal of £. We shall uniquely determine £0, £1, • • ' m 

J F such that 

* Tôhpku Mathematical Journal, May, 1920. 
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(io) ? = E ( - D'r-1^, 
a=0 

where the upper limit of the summation may, if desired, be 
taken as oo. 

Let m=p{1 • • • p[j be the resolution of m>\ into powers of 
distinct primes p\} • • • , pj\ write 7r(l) =0 , 7r(m) = r i + • • • + r / . 
The following are definitions : 

(H) Un) = 0, ( * > * ( » ) , * = 1,2, • • • ) ; 

(12) £0 = £0 = 7?; J 6 = 0J ( J < 0 ) . 

Let ai, • • • , a«, Pi, • • • , P« be a particular set of integers 
such that, for n>\ and a > 0 fixed, 

(13) » = PfiPf* • • • P /« , a = ax + a2 + • • • + a., 

1 < Pi < P 2 < • • • < P., 0 < ai, 0 < a2, • • • , 0 < aê. 

Then 

w , ti(Pi)MS(P2))« • • • (€(P.))a- , ^ A. 
(14) £„(») = — ; {n > 1), 

ai\a2\ - - - as\ 

where the summation refers to all the distinct decompositions 
of n of the type defined in (13) ; the variables in the summation 
are s, ai, • • • , a„ Pi, • • • , P s . The £a in (10) are given by 
(11), (12), (13), and evidently £'(n) is a finite sum of at most 
ir(n) terms. We may omit a detailed proof, as it follows readily 
from the paper cited in §2, end. 

4. I-Operations on Power Series. Let a, j3, 7 be any elements 
of IF such that a/3 = 7, and let each of the series 

M*) = X)«M*n> -#(*) = ]C/3(w)xw 

n = l w = l 

have radius of convergence 1. Then the series 

C(x) = ^y(n)xn 

n=l 

converges absolutely within the unit circle I \ 
For, if r is an integer>0, and x0 is in T, | x 0

r | < l , and 
]3M]C»»i<*(n)*orn converges absolutely. Hence 
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oo p oo - l 

S Kr)T,a(n)x0
rn 

r=\ L n=l J 

converges absolutely, and by (6) its sum is C(xo). 
The I-product A(x) B(x) of A{x), B(x) is defined within Y 

to be C(x), and we write 

(15) A(x)B(x) = C(x). 

As a special case of (15), if @ = u, where u(n) = l,(n = l, 
2, • • • ), the /-product ^4(x) B(x) is the Lambert series 
J^"=ia(n)xn/(l-xn). 

Write 
00 

(r = ce+j8, S(*0 = ] £ cr(n)xn. 
n — l 

Then 5(x) converges absolutely in T, and we define the I-sum 
of A (x), B(x) to be the ordinary sum, 

(16) A(x) + B{x) = S(x). 

From (14), (16) the /-difference is defined in an obvious 
manner. The following are definitions: 

00 00 

(17) U(x) = X ^ M ^ J 0(x) = J]co(w)xn; 

U(x) is called the I-unit series, and 0{x) the I-zero series] 
U(x)=x, O(x)=0. 

(18) THEOREM. The set of all power series in x lacking the 
constant term and having radius of convergence 1 is a ring, 
say the I-ring, in which addition is as in (16), multiplication 
as in (15), and the unit, zero elements are U(x), 0(x) respectively. 

The proof is immediate, on recalling the definition of a ring 
as a set closed under addition, multiplication, and subtraction. 
For example, if A(x), B{x), C(x) are any elements of the /-ring, 
the distributive law asserts that 

A(x) [B(x) + C(x) ] = A (x)B(x) + A (x)C(x), 

the indicated multiplications and additions being in the /-ring. 
But this is obvious from the definitions of the operations 
and (9). Generally, by the correspondence established in 
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(15), (16) between operations in the /-ring, and in IF, and 
the correspondence between IF and a ring of an abstract 
field, the theorem is proved. 

The element X(x) =^i(n)xn of the /-ring is now defined 
to be regular or irregular according as X'(x) =X^^(n)x n> where 
££' = rj, is or is not in the /-ring. 

Let A(x) =y^a(n)xn be any element of the /-ring, and 
B(x)=^2^(n)xn any regular element of the /-ring. Write 
B'(x) =^2P'(n)xn, where/3j8' = 77. Then the I-quotient A(x)/B{x) 
of A (x) by B(x) is defined by 

(19) A(x)/B(x) = A(x)Bf(x); 

B'(x) is called the Irreciprocal of B(x), and we write B'{x) 
= U{x)/B{x). Combining (18), (19), we have the following 
theorem. 

(20) THEOREM. The set of all elements of the I-ring is an 
irregular field, say the I-field, in which division is as in (19) 
and the remaining fundamental operations as in (18); the ir­
regular elements of the I-field are those of the I-ring. 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

ON TRI-RHAMPHOIDAL AND BI-OSCNODAL 
QUINTIC CURVES 

BY HAROLD HILTON 

In a recent paper,* T. R. Hollcroft says "For example, 
a quintic may have three rhamphoid cusps or two tacnode-
cusps." 

Now it is true that there is just one protectively distinct 
quintic with three rhamphoid cusps (or two, if we confine 
ourselves to real projections), namely 

x:y:z = t\t - f - WS) - ^ - *)2(' " h + WV 
: ( * - l)2(/ + è - WS). 

* This Bulletin, vol. 35 (1929), p. 847. 


