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A CORRESPONDENCE CONNECTED WITH A 
PENCIL OF CURVES OF ORDER n 

BY A. R. WILLIAMS 

All curves of order n passing through %n(n + 3) — 1 points 
pass through §(n — l)(w — 2) other points. Or we may say 
that the n2 base points of a pencil of curves of order n are 
determined by the number given above. When %n(n+3)—2 
are fixed and another moves on a curve of order m, the locus 
of the remaining ^n(n — \){n — 2) is a curve of order m(n2 — l) 
which has a multiple point of order mn at each of the fixed 
points. The order of the locus is reduced by n for each passage 
of the given curve through a fixed point.* It is the purpose of 
this paper to discuss the locus of the remaining base points 
of a pencil when a number of them are fixed and the others 
necessary to determine the pencil are taken consecutive on 
some curve. 

We consider first the case when ^n(n + 3) — 3 points are fixed. 
Thus for example taking n — 4, we fix 11 base points of a pencil 
of quartics and let 2 be consecutive on a line L To find the 
locus of the remaining three we use the rational quintic surface 
with a double cubic whose plane sections correspond to the 
oo3 quartics through the 11 fixed points. To / corresponds on 
the surface a rational twisted quartic C4; and to a pencil of 
quartics through the 11 points and tangent to 7 corresponds 
a pencil of plane sections whose axis is tangent to C±. This 
tangent meets the quintic surface in 3 more points which cor­
respond to the three remaining base points of the pencil of 
plane quartics. The tangents to C4 form a developable of order 
6. Therefore, the plane curve which corresponds to the inter­
section of the developable with the quintic is of order 6 X 4 
and has a sextuple point at each of the 11 fixed points. In this 
locus the line / is counted twice. Hence the locus sought is of 
order 22. In addition to the singularities at the fixed points 

* Milinowski, Journal für Mathematik, vol. 67, p. 263. For « - 3 w e have 
the Geiser involutorial transformation of order 8. 



134 A. R. WILLIAMS [Feb., 

it has a number of nodes which correspond to those intersections 
of the double curve of the developable with the quintic which 
do not take place on the cuspidal edge C4. The developable 
has 4 stationary tangent planes and a double curve of order 6. 
Four tangents to the cuspidal edge meet it again. The points 
of contact of the stationary planes are ordinary points on both 
the double curve and the cuspidal edge. A point in which the 
cuspidal edge is met by a tangent to itself is a cusp on the 
double curve and an ordinary point on the cuspidal edge. 
Hence in the present instance the double curve of the develop­
able meets the quintic in 6X5—4 — 2X4 = 18 points which are 
nodes on the common curve of the developable and the quintic, 
and which give nodes on the locus we are considering. The 
double cubic of the quintic surface meets the developable 
in four points not on the cuspidal edge. These are nodes on 
their common curve, but do not of course give nodes on the 
plane locus of order 22. The genus of the latter is, therefore, 
210 — 11X15 — 18 = 27. Since 4 tangents to the cuspidal edge 
C4 meet it again, there are 4 positions of the consecutive pair 
on / such that one of the remaining 3 falls at a distinct point 
on /. The other 18 intersections of the locus studied with / are 
self-corresponding. At such a point the pencil of quartics have 
3-point contact; and on the surface C4 touches one of the 
principal tangents to the quintic, and the osculating plane to 
C4 is the tangent plane to the quintic. The plane locus sought 
and its counterpart on the rational surface must always 
have the same genus. In this case they are both of order 22. 
We have seen that the singularities of the plane curve are the 
11 sextuple points ( = 165 nodes) and 18 nodes corresponding 
to 18 nodes on the space curve. The further singularities 
of the latter are the 4 nodes lying on the double cubic and 
161 apparent double points. The last number may be verified 
independently by use of the surface which is the locus of a 
point the intersection of whose polar planes with respect to 
the quintic and the developable meets a given line. 

Similarly, we may fix %n{n-\-$)— 3 base points of a pencil 
of curves of order n and let 2 more be consecutive on a curve 
c of order m and genus p, having d nodes and k cusps apart 
from the fixed points, and having a multiple point of order 
Si at a fixed base point A{. Then 
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Since only two points are taken consecutive on c, the occur­
rence of a cusp on the latter causes no difficulty. At the 
cusp we have merely a pencil of curves whose common tangent 
is the cuspidal tangent. To find the locus of the remaining 
\{n— V)(n — 2) points we use the rational surface of order 
\n{n — 3 ) + 3 , whose plane sections correspond to the <x>3 w-ics 
through the fixed points. To c corresponds a curve of order 
mn—Y^Si and genus p, having d nodes and k cusps. Hence we 
have r — 2(rnn—Y^Si — 1)— k-\-2p, where r is the order of the 
developable of its tangents. A curve in 3-space of order n and 
genus p, without nodes or cusps, has 2(/z —2)0u —3)+2^(jii —6) 
tangents that meet it elsewhere. If an apparent double point 
is replaced by a node, this number is diminished by 4; but if 
an apparent double point is replaced by a cusp, the reduction is 
equal to the order JU.* Such tangents meet the curve again 
in points that are cusps on the double curve of its developable. 
Replacing d by its value, we have for the number, 7, of such 
tangents and points 

y = 2(mn^siy + (mn-yZsi)(2p-10-k)+2Zsi(Si-l) 
-2m(m-3)+4:k-Sp + S. 

The genus of a plane section of the developable is the same as 
that of the cuspidal edge. Hence the order, x, of the double 
curve is ^(r — l)(r — 2)—p — (mn—^2si). And the number, a, 
of stationary planes or the number of stationary tangents of a 
plane section, is 

3 0 - 2) - 2 {mn -J^Si) + 6p. 
The order of the locus sought is rn — 2m. At a fixed point Ai 
it has a multiple point of order r — 2s{. Hence the singularities 
at the fixed points are equivalent to ^2(r — 2si)(r — 2si — l) 
double points. The other nodes are given by the intersections 
of the double curve of the developable with the rational surface 
that do not occur on the cuspidal edge. Their number is, there­
fore, x[^n(n — 3)+3] —a — 2y — 4:d — 2k. The genus is thus found 
to be 

\{n — 3) (5mn2 — 5n£2,Si — 6m — 5n — 2k'n) + ?p(5n2 — 15n+2), 

* See Severi, Isti tuto Lombardo Rendiconti, vol. 21 (1921), p. 251; and 
Salmon, Solid Geometry, vol. 2, §617. 
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which reduces to p when n = 3. This is necessary since if 6, or 
indeed any number, of base points of a pencil of cübics are fixed 
and enough more to make 8 are taken consecutive on a curve 
c, the locus of the 9th will in general correspond birationally 
to c. In special cases, the correspondence is not birational, 
but to any point of c will always correspond a single point of 
the locus of the 9th. So the genus of the latter will never be 
greater than the genus of c* 

The above may immediately be extended to the general 
case when %n(n+3)—-r points are fixed. But one difficulty is 
encountered as shown by the following simple example. Fixing 
5 base points of a pencil of cubics and letting 3 be consecutive 
on a conic c2, to find the locus of the 9th we use the rational 
quartic surface in 54 whose hyperplane sections correspond 
to the oo4 cubics through the fixed points. To c2 corresponds 
a rational sextic C6, and to a pencil of cubics through the fixed 
points and osculating the conic at P correspond a pencil of 
hyperplane sections having in common the osculating plane 
to C6 at P ' . This osculating plane meets the quartic surface 
in one more point which corresponds to the 9th base point 
of the pencil of cubics. The order of the hyperdevelopable of 
the osculating planes to CO is 12. Hence the locus sought is of 
order 12X3 — 3X2 = 30 and has a multiple point of order 12 
at each fixed point. There are 18 osculating planes to C% that 
meet it elsewhere. Hence 42 intersections of the locus of the 
9th with c2 are self-corresponding, and the others correspond 
to distinct points on c2. The singularities at the fixed points 
are equivalent to 330 double points; and since the locus must 
be rational, there are 76 other nodes which correspond to those 
intersections of the double surface of the hyperdevelopable 
with the quartic that do not occur on the cuspidal edge. When 
n>3, it would be necessary to determine this number inde­
pendently. The characteristics of the hyperdevelopable and its 
double surface, and the order of its triple curve are easily 
obtained by projection and section. But the double surface 
contains the cuspidal edge, which of course lies on the rational 
surface. This makes it difficult in general to find the remaining 
intersections of the two surfaces. Moreover, the number of 

* Picard, Traité d'Analyse, vol. 2, Chap. XV, §19. 
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dimensions of the double variety increases with the number 
of dimensions of the space in which the configuration is placed. 
The question thus raised is not of primary importance for the 
present purpose, and therefore I will not attempt in this paper 
to give a general formula for the genus of the locus sought when 
n>3 and the number of fixed points is less than \n(n-\-3) — 3. 
But in all cases it is easy to find its order, its singularities at the 
fixed points, and the number of positions of the consecutive set 
on c such that one of the remaining points of the pencil is a 
distinct point of c. 

Thus we fix %n(n+3) — r points of a pencil of n-ics and 
let r— 1 be consecutive on an appropriate curve c which we 
suppose to have no cusps or multiple points with coincident 
tangents. To find the locus of the remaining %{n —l)(w — 2) 
we use the rational surface of order \n{n — 3 ) + r in r-space. 
To c will correspond on the surface a curve C of order \x deter­
mined as above. The hyperdevelopable composed of the 
Sr-2 having (r—l)-point contact with C meets the rational 
surface again in the curve which corresponds to the locus 
that we seek. To find the order of this hyperdevelopable, 
or the number of such Sr-2 that meet a general line in 5 r , 
we project successively on an Sr~i and an 5r_2. It follows 
immediately that the required number is the number of Sr-z 
(in the projection space Sr-2) that have stationary, that is, 
(r— l)-point, contact with C', the projection of Con the Sr_2. 
The number of such stationary Sr_3 is the number of stationary 
tangents to a plane section of the hyperdevelopable of C'. 
This in turn is 3(R — 2) — 2K + 6p, where R is the order of the 
plane section, K the number of its cusps, and p the genus of 
£, and hence of C and of all curves derived from C by projec­
tion and section. But R is the number of Sr_4 in Sr_2 that have 
(r — 3)-point contact with C' and meet a given line. And K is the 
number of Sr_5 in Sr_2 that have (r — 4)-point contact with 
C' and meet a general plane; that is, the number of Sr~b in 
5V_3 that have (r — 4) -point contact with C" and meet a general 
line in 5 r_3 . C" is of course the projection of C' on the 5r_3. 
Hence if Ff denotes the order of the developable of C in Sr, we 
have F/ = 3(FrtL2-2)-2FrfL.z + 6p. We have independently 
Fzfi = 2(iJL—l)+2p — k1 where k is the number of cusps on C. 
Hence in general we have 
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/ 7 r " = = ( f - l ) ( M - r + 2) + ( f - l ) ( f - 2 ) / > - ( r - 2 ) * . 

We must suppose that there are no cusps on c for r>3. 
Hence k = 0. The above result includes the nodes of C\ 
that is, there is no difference in this respect between a node 
and an "apparent" double point. The order of the locus of the 
%(n — \)(n — 2) points is therefore nF/—(r—l)ni, where m is 
the order of c. At a fixed point Ai it has a multiple point of 
order F/— (r— l)si, where Si is the order of Ai on c. To find 
the number of positions of the consecutive set on c such that 
one of the remaining points falls at a distinct point on c we 
must find the number of Sr-2 in Sr that have (r—1)-point 
contact with C and meet it elsewhere. For a rational curve of 
order fx without multiple points in Sr (and not contained in 
a space of fewer dimensions) this number is easily found by 
the principle of correspondence to be (r — 1) ((JL — r +1) (/JL — r). 
Following the method indicated by Severi in the article referred 
to, I have found for a similar curve of genus p the number 

( r - l ) ( / i - r + l ) ( M - f ) + [ M ( r - l ) ( f - 2 ) - f ( f - l ) » ] p . 

Moreover, this number is reduced by 2(r — 1) when the curve 
acquires a node without changing its genus. 

This method when applied in very simple cases sometimes 
brings out a fact that is not otherwise obvious. Thus we con­
sidered pencils of cubics through 5 fixed points and osculating 
a conic. If we replaced the conic by a line, the locus of the 
9th point would be the conic determined by the fixed points. 
This method shows that as the point of osculation describes 
the line, the 9th point describes the conic triply. For to the 
line corresponds on the rational quartic surface in S± a cubic. 
The 3-space of this cubic meets the quartic surface again in a 
line which is the image of the conic through the fixed points 
and a bisecant of the cubic. Through a general point of this 
line pass three osculating planes to the cubic. The above state­
ment immediately follows. 
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