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AN APPLICATION OF T H E M E T H O D OF 
PARAMETERS TO LINEAR PARTIAL 

D I F F E R E N T I A L EQUATIONS* 

BY F . H. MILLER 

1. Introduction. The method of variation of parameters 
provides, as is well known, an elegant means of finding the com­
plete primitive of a linear ordinary differential equation whose 
complementary function is given. In this paper it is shown that 
the method is applicable also to certain linear partial differ­
ential equations of the second order and that the results so ob­
tained are interconnected with the familiar Laplace trans­
formation. 

In what follows we shall understand that the functions of 
x and y considered are of class C" in a domain of definition 
K, where C" is the class of functions which are continuous to­
gether with their first and second derivatives. We shall suppose 
that the complementary function of our differential equation is 
of the form F(a)+G((3), a and ]8 being known distinct expres­
sions in x and y, and F and G arbitrary functions, in C". I t may 
be readily verified that any differential equation having such a 
complementary function will be of the type 

(1) (RD2 + SDD' + TD'2 + PD + QD')z = V, 

where J?, 5, • • • , V are functions of x and y alone and D = 
d/dx, D'=d/dy. Not every equation conforming to (1), 
however, will have F(a)+G((3) as complementary function; 
a criterion tha t may be easily applied arises from the following 
conditions,f necessary and sufficient in class Cn : 

(2a) Ra£ + Saxay + Tay
2 = 0, 

(2b) R$i + 5 / 3 A + Tfö = 0, 

(2c) Raxx + Saxy + ToLyy + Pot x + Qoty = 0, 

(2d) S0XX + SPXy + TPyy + P£x + Qj3y = 0. 

* Presented to the Society, October 26, 1929. 
t It should be noticed that equations (2a)-(2d) place symmetrical hypoth­

eses on a and /3; this symmetry will be made use of later in the discussion. 
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These relations must be satisfied by a and /3 identically in x 
and y; for, if we substitute z = F(a)+G(J3) in the homogeneous 
equation obtained from (1) by replacing V by zero, it follows 
that since F and G are arbitrary, the coefficients of their first 
and second derivatives must vanish identically in K, whence 
we have the above relations. 

We further restrict the domain K by assuming, throughout 
our work, S2 — 4:RT9é01 J = axf3y — ay(3X7éO, inK. In§ 2 we con­
fine our attention to the case in which the first partial deriva­
tives of a and ]8 are all different from zero in K, and in §3 
we consider the special cases in which one or more of these 
derivatives vanish identically in K; it will also be found neces­
sary in each of these two discussions to assume K restricted so 
that solutions of certain associated ordinary differential equa­
tions needed in the process be obtainable.* 

In the last section we shall indicate the relation between 
our previously derived results and the process of effecting a 
Laplace transformation. 

2. The General Case. The criterion mentioned in the intro­
duction for the determination of those equations having comple­
mentary functions F(a)+G(P), when the first partial deriva­
tives of a and /3 are different from zero in K, is indicated by 
the form of equations (2a)-(2d). We obtain the roots of the 
quadratic R62 + S6 + T = 0, whose discriminant is by hypothe­
sis different from zero in K, and denote them by ax/oLy and 
fix/fiy in accordance with equations (2a) and (2b) ;t the functions 
a and /3 so determined must then, by (2c) and (2d), themselves 
satisfy the homogeneous equation corresponding to (1). 

Supposing this test fulfilled, and that we are in possession of 
the complementary function, we assume the general solution 
of (1) to be 

(3) z = au + Pv + w, 

where u> v, w are unknown functions of x and y in C" to be 
employed as parameters. Consequently, taking 

* The equations referred to are (11), (14), and the corresponding ones 
of §3. 

f The quadratic in 6 shows us that , apart from a possible common factor, 
R=oLyfiy, S~ — (axPy-i-aypx), T=axf3x] thus R and T are in the present case 
certainly different from zero in K. 
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(4) 

(5) 

aux + (3vx + wx = 0 , 

aUy + fiVy + Wy = 0 , 

as the two additional conditions on our parameters, we find 

Dz = axu + (txv, D'z = ayu + pvv, 

D2Z = «ajW» + axxU + jS^x + £ara#, 

(6) \ DD'z = ajyWa- + axyu + /3yvx + pxyv, 

D'Dz = axuy + axyu + fixvv + f$xvv, 

{ D'2Z = «„«„ + ŒyyU + jSyfly + jffyyfl. 

Since DD'z must be identical with D'Dz,* it follows that 

(7) CLyUx — axUy = — PyVX + PXVy. 

From (4) and (5) we get adu+(}dv+dw = 0; combining this 
with dz found from (3), we obtain 

(8) dz = uda + vdj3 = (uax + vfix)dx + («ay + vfiy)dy. 

By virtue of relation (7), the last member of (8) is seen to be 
a total differential. Hence it is necessary merely to determine 
u and v, insert their values in (8), and integrate. 

Substituting from (6) in the given equation (1) yields, after 
reduction by means of equations (2d) and (2c), 

(9) (Rax + Say)ux + Tavuy + (R$x + 3(3y)vx + Tpyvy = V. 

Now, from (2b),-(R0x+Spv)/Pv=Tpv/px\ making use of this 
after multiplying equation (7) throughout by — (R^x + S/3y)/Pv, 
we have 

— <Xy{Rfix + Sfiy)Ux + <XX(R$X + Sl3y)Uy 

= PV(RPX + SPy)v,+ TPyHy. 

Eliminating vx and vy between this equation and (9), we obtain 
a linear partial differential equation of first order in u, the 
subsidiary equations of which are 

(10) dx/(RJ) = dy/(Rax$x + Sax$y + Taypy) = du/tfvV). 

As an immediate consequence of (2a), we get from (10), a = ci, 

* For z as given by (3) is by hypothesis in C". 
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a constant. Solving a — C\ for y* in terms of x and ci, and insert­
ing this value of y in (10), there is obtained 

du PVV 
(11) _ = t Z _ . 

dx RJ 
Integrating (11) and replacing c± by a in the result gives us 
u = <t>{x, ;y)+const. Consequently we have 

(12) u = 0(*,y) + F i ( a ) , 

where Fi is an arbitrary function in C". 
The function t; is found in precisely the same manner,t 

the equation determining it being 

(13) - RJvx + (Rax(3x + Say(3x + Tay3y)vy = ayV. 

It follows in this case that the equations subsidiary to (13) give 
us, by (2b), /3 = c2, and therefore 

dv ayv 
(14) — = - — , 

dx RJ 
where again y is supposed replaced by its value from j3 = C2. 
Hence there is found 

(15) v = iK*,:y) +Gi(/3). 

Substituting from (12) and (15) in (8), we get finally 

dz = (4>ax + Wx)dx + (<l>ay + Wv)dy + Fx(a)da + Gi(/3)d/3, 

and 

(16) z = ƒ [{<j>ax + Wx)dx + (<K, + Wv)dy] + F(a) + G(fi), 

the first member on the right representing the desired particular 
integral. 

3. Special Cases. The existence of what we shall call special 
or exceptional cases, in which one or more first derivatives of 
a and ft vanish identically in K, is easily recognized from the 
form of equation (1). For equations (2a) and (2b) show that 

* This is possible since a ^ O in K. 
t It is here tha t the symmetrical hypotheses on a and j3 play a part. 

The function u having been found, v might also be obtained from (7) ; however, 
because of symmetry, and for use in §4, equation (13) is preferable. 
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the vanishing of a derivative of a or /3 entails the vanishing of 
R or r , so tha t if one of these derivatives is identically zero 
in K the term in D2z or D'2z will be absent from the differ­
ential equation. In such event also, the arguments a and /3 
are found without difficulty,* and we may proceed to the evalua­
tion of the particular integral. 

(a) First suppose that instead of having aX7^0 we now have 
ax^0 in K, while all other restrictions previously imposed 
on K and the differential equation (1) are retained. Then, 
by (2a), T must be identically zero in K. Consequently equa­
tions (7) and (9) reduce to 

(7a) <xyux = — fiyvx + pxvVf 

(9a) Sayux + (Rj3x + Spy)vx = V, 

respectively. We may evidently combine these so as to obtain a 
partial differential equation of first order determining v, and 
knowing this function, we may find u from (7a). The case 
in which f3x = 0 instead of ax = 0 is precisely the same except 
that a and /?, and u and v, are interchanged in (7a) and (9a). 

(b) If, other conditions being the same, we next suppose 
that ay in place of ax is identically zero in K, equation (2a) 
shows us that R must vanish, and therefore equations (7) and 
(9) become 

(7b) — axUy = — @yVx + PxVy, 

(9b) SpyVX + TPyVy = V. 

Equation (9b) determines v directly and (7b) then gives us u. 
Again, the case in which j S ^ O in place of ay = 0 is entirely 
similar. 

(c) Finally, suppose the conditions altered by having ax and 
13y both identically zero in K. Then 

(7C) OtyUx = PxVy, 

(9c) SoLyux = V. 

The functions u and v are readily obtainable from these rela­
tions. If ay and j8x vanish identically in K, a like pair of equa­
tions serves to fix u and v. 

* See, for example, Forsyth's Theory of Differential Equations, 1906, 
vol. vi, p. 32, cases iii-v. 
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Obviously both first derivatives of a (or of /3) cannot vanish 
identically in K simultaneously, nor can we have ax = fix = Q (or 
(Xy = l3y = 0) identically in K, since by hypothesis the jacobian J 
does not vanish in K. Thus, the exceptional cases are all 
amenable to the method described in the preceding section. 

4. The Laplace Transformation. If we take a and /3 as new 
independent variables, equation (1) reduces to 

(17) dh/dadP = - ay/3yV/(RJ2), 

assuming the conditions of §2 fulfilled. The right-hand 
member of (17) may also be expressed as — axf3xV/(TJ2); cases 
(a) and (b) of the preceding section are readily shown to submit 
to one or the other of these two modes of expression, while (c) 
obviates the necessity of any transformation, since (1) must 
then be simply SDDfz = F b y (2a)-(2d). Now if a = a(x, y) and 
j3 = j8(x, y) can actually be solved* for x and y in terms of a and 
j3, substitution of these values in the right member of (17) 
followed by two simple integrations yields the general solution. 
We shall call such a procedure a "direct" application of La­
place's transformation. In some cases, however, it is not pos­
sible to effect this substitution, as the following example 
illustrates. 

Let there be given the differential equation 

I*(l - x)D2 - y(l - %2)DD' + y2(l - x)D'2 + D- xyD']z = 1, 

and suppose the domain K to consist of any region not including 
those points for which # = 0 or 1 or y = 0. Using the relations 
(2a)-(2d), we find that F(xy)+G(yex) is the complementary 
function. Now it is a practical impossibility to solve the equa­
tions a — xy, (3 = yex simultaneously for x and y, and conse­
quently Laplace's transformation cannot be directly applied. 
But equations (11) and (14) are here du/dx — l / [ci( l — x)2], 
dv/dx=-l/[c2(l-x)2],sothat<t>=l/[xy(l-x)],\l/=-l/[ye*(l-x)]. 
Substitution in (16) therefore gives as the general solution 
z = log x + F{xy) + G (yex). 

Thus, when a given differential equation of the type here 
considered does not lend itself to a direct application of (17), 
we may nevertheless obtain the general solution from equation 

* Of course, this can theoretically always be accomplished, aside from 
algebraic difficulties, under our hypotheses. 



126 F. H. MILLER [Feb., 

(16). I am indebted to H. W. Reddick for pointing out to me 
that (16) may also be viewed as a consequence of equation (17) ; 
that is, the result obtained from the standpoint of the para­
metric method is also intimately connected with the Laplace 
transformation. Since 

(18) ax = Jyfi, av = — Jxp, Px = - Jya, Py = Jxa, 

equation (17) gives us* 
dz r fiyV dx dz r PvV °% 

— = — dp+Ffa), 
da JR RJ dB 
da JR RJ dp 

(19) 
dz C oiyV dx 
— = - I — da+Gi(/5) , 
dfi Ja RJ da 

where the subscript on an integral sign denotes the variable with 
respect to which the integration is to be performed. But when 
we integrate with respect to/3, xpdfi is merely dx; likewise, in the 
second of equations (19), xada will be dx. Hence the above two 
integrals are simply the expressions denoted by <j> and \[/ re­
spectively, and therefore 

ƒ(* 

ƒ 

da + ZRdp) + F(a) + G{p) 

($da + tdp) +F(a) +G(P), 

which is our equation (16). 
Theoretically, of course, the solution of equation (1) is ex­

pressed by writing 

n V dx dx 
---dadp+F(a)+G(p), 

u R da dp 

which follows directly from (17) ; our purpose here has been to 
indicate the manner in which the particular integral of (20) may 
be explicitly determined. Although, as we have seen, our 
method of attack may be viewed in connection with a Laplace 
transformation, it is interesting to observe that these results 
also follow from the familiar idea of variation of parameters. 
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* We are again supposing the hypotheses of §2 to be satisfied. In the 
exceptional cases (17) may be taken in another form, as previously stated; 
the details need not be considered anew. 


