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NON-ISOLATED CRITICAL POINTS OF 
FUNCTIONS* 

BY W. M. WHYBURNf 

The isolated critical points of real functions of n indepen­
dent real variables have been treated in an elegant manner 
by Marston Morse.J This treatment obtains definite 
relations between the numbers of critical points of w + 1 
types that appear in a bounded portion of the space of the 
independent variables. Morse requires his functions to have 
continuous third partial derivatives in the neighborhoods of 
the critical points and imposes conditions that are sufficient 
to insure the existence of at most a finite number of such 
points in the domain under consideration. In the present 
note§ we consider functions that have continuous first 
partial derivatives and may have an infinite number of criti­
cal points, or even continua of such points, in the given do­
main. As a special case of our results we obtain the minimax 
principle of Birkhoff in the modified form given by Bieber-
bach.|| 

Let 5 denote the space of the n real variables x\> x%, • • • , 
xn, and let (x) = (xi, x2, • • • , xn) denote a point in this 
space. Let R be a bounded,^ open, and connected point set 
in S and let C, the boundary of R, be connected. Let the 
real function f(xi, • • • , xn) be single-valued and continuous 

* Presented to the Society, December 27, 1928. 
t National Research Fellow in Mathematics. 
t Transactions of this Society, vol. 27 (1925), pp. 345-396. 
§ The author is indebted to Marston Morse for helpful suggestions 

concerning the material of this paper. 
|| Differ entialgleichungen, Berlin, Springer, 1927, p. 140. 
% The terms of classical point set theory are used in their usual sense. 

The distance between two points is given by a generalization of the ordinary 
distance formula in the plane. If K denotes a point set, then K' is used to 
denote K together with all of its limit points. 
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throughout P ' and furthermore let fi(xi, • • • , xn) =df/dxif 

{i — 1, • • • , n), be continuous in R'. On C, let f(x)=K, a 
constant, and at all points of R = R' — C let ƒ (x) be less than K. 

A point of R at which /i(x) =/2(#) = • • • = /n (# )=0 is 
called a critical point of ƒ(#) and the value of f(x) at such a 
point is called a critical value of f(x). Let i J denote the set 
of all critical points of ƒ (x) in P . 

THEOREM 1. For each point p of H there exists a connected 
subset M(H, p) of H that contains p and has f(x) =f(p) at 
each of its points and finally, such that M(H, p) is not a proper 
subset of any other subset of H that is connected, contains pf 

and has f{x) =f(p) at each of its points. 

PROOF. Let p be a point of H and let T denote the set of all 
points of H for which f(x) =ƒ(£). If T is connected, it is the 
desired set. Since T is bounded, we may find a hypercube C\ 
of edge d containing T on its interior. Let d , C2, • • • 
denote the set of hypercubes obtained by dividing Ci into 2n 

hypercubes C2, C3, • • • , C2
TC+i of edge d/2, then dividing 

each of these into hypercubes of side d/4 and continuing this 
subdivision indefinitely. We suppose these arranged so that 
for every i, d has its edge greater than or equal to the edge 
of C»+i. Let Cni be the cube of lowest subscript that contains 
a point of T and is such that T can be expressed as the sum 
of two mutually exclusive closed sets Pi and Qi such that 
Pi contains p but no point of C'ni. Certainly such a cube 
exists since, by hypothesis, T is not connected and hence can 
be expressed as the sum of two mutually exclusive closed sets 
Si and 5*2. There exists a positive number t such that the 
sets S\ and S^ are at a distance apart greater than e and hence 
any cube of the set Ci, C2, • • • , that has its edge of length 
less than e/2 and contains a point of the set which fails to 
contain p may be chosen. If Px is not connected, we let CUl 

be the hypercube of the set Ci, C2, • • • , of lowest subscript 
which contains points of P i and has the property that Pi can 
be expressed as the sum of two mutually exclusive sets P 2 

and Q2 such that P 2 contains p but contains no point of C^2. 
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This process may be continued indefinitely unless one of the 
P 's , P j , is connected. If Py is connected, it is the desired set 
since T-~Pj = Qi + Q2+ • • • + Q, and hence P3 cannot be a 
proper subset of a connected subset of T. If the process con­
tinues indefinitely, then the sequence P i , P 2 , • • • , has at 
least one common point, namely, p. Let M denote the 
totality of such common points. M must be connected, since 
otherwise it would be the sum of two mutually exclusive 
closed sets (since M is closed). These sets would be at a 
distance apart greater than a definite positive qonstant and 
hence we could find a hypercube Ck of the set G, — • , con­
taining points of that set which failed to contain p, but having 
no point of the other set in Ck - This, however, is impossible 
since by our method of picking Cnv • • • , Ck would have been 
chosen at at least the &th stage. Since T=M+^T^i Qi, 
it follows that any point q of T — M belongs to one of the 
<2's, Qq, and since M belongs to P g, it follows that q could 
not belong to a connected subset of T that contains M. 
Hence M is the desired set M(H, p). 

DEFINITION. By the critical sets of f(x) in R we mean the 
sets M(H, p) of Theorem 1. 

THEOREM 2. Let Ki, K2, • • • , Kmi where m is a positive 
integer, be subsets of H and let each Ki have the property that 
any two of its points can be joined in Ki by a rectifiable Jordan 
arc* of finite length. If k=K{+ • • • +KJ is connected, 
f(xu • • • , xn) is constant on k. 

PROOF. A theorem on rectifiable curves in the plane 
and in three-space can readily be extended to hold in w-space. f 
This theorem states that if x=fi(t), y—hif)^ z~fi(t) is a 
rectifiable curve of finite length, then dfi/dt, df2/dt, df3/dt 
exist and are finite at every point of the t interval with the 
possible exception of a set of points of measure zero. 

* The definition of such an arc is an obvious extension of the two-
dimensional definition. 

f Hobson, Theory of Functions of a Real Variable, Cambridge, 1921, 
vol. I, pp. 320 and 376. 
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Let pi and p2 be any two points of Ki and let Xj =ƒ/(/), 
j = 1, • • • , n, where t denotes the length of arc from pu be a 
Jordan arc of the type whose existence is conditioned in the 
theorem. We have df==^2^ifjdxj almost everywhere on the / 
interval and since the arc is a subset of H, we have df=Q 
almost everywhere on this arc. An application of Lebesgue 
integration yields ƒ (pi) =fip2). Hence ƒ (x) is constant on Kit 

From continuity, it is therefore constant on K- and from 
the connectedness of k it follows that fix) has a fixed constant 
value on this set of points. 

DEFINITION. A critical set M(H, p) is said to be a minimal 
set of f{x) provided it is true that f or every point q of M(H, p) 
there exists a positive number eq such that f(x) ^f(q) for every 
point (x) whose distance from q is less than eq, the equality sign 
holding only for points of M(H, p). 

THEOREM 3. Iff(xi, • • • , xn) has two distinct minimal sets 
Mi and M'2 in R, there exists at least one critical point of 
f(xu • • • , xn) in R that does not belong to Mi + M2. 

PROOF. Let the notation be chosen so that if wi and m are 
the values of fix) on Mi and M2, respectively, then m^ntu 
Let the notation Gif^h) mean the subset of R' on which 
f^h, and let Gif=h) mean the subset of R' on which ƒ = h> 
while Gif<h) means the subset of Rf on which f<h. In 
Gif^m) there are two closed, connected, and mutually ex­
clusive sets Ni and N2 such that Ni contains Mi, N2 = M2, 
and iViand iV2are the maximal connected subsets* of GifSm) 
tha t contain Mi and M2l respectively. That Ni and N2 are 
mutually exclusive follows when one notes that if they had 
a point q in common it would follow from the connectedness 
of Ni and N2 that this point would belong to M2 and be a limit 
point of points of iVi — ikfi (since Mi is closed), that is, points 

* By a maximal connected subset of a set T having certain properties 
we understand a subset which has the properties and is connected but which 
is not a proper subset of any other subset of T having these properties. 
The existence of such sets for each of our applications is established by a 
repetition of the arguments used in proving Theorem 1 with slight verbal 
modifications. 
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of G(f<m). This is impossible since M2 is a minimal set of 

Let h be any number such that m^h^K and let Nih and 
N2h be the maximal connected subsets of G(f^h) that con­
tain Mi and M2, respectively. For h = m, Nm and N2% have 
no point in common while for h = K, these two sets have a 
common point and are therefore identical. An application 
of the Dedekind-cut postulate yields a number k, m^k^K, 
such that k is either the greatest number for which Nu and 
N2k have no point in common or it is the least number for 
which Nik^N2k. We show that k is the least number for 
which Nik^N2k. Suppose k is the greatest number for which 
Nik and N2k are mutually exclusive. Noting that R' = G(f^K) 
is connected, we can and will choose a sequence ki>k2 

> - - - >ki> • • • , so that k<ki<K and lim^oo ki = k. 
Ni — Niki^Ntki, i = l, 2, • • • , is a sequence of closed, 
bounded, and connected sets having the property that for 
each i, Ni+\ is a subset of Ni. A direct generalization of the 
usual proof in the plane, making use of the Heine-Borel 
property and the set of hypercubes introduced in the proof of 
Theorem 1, shows that the common part, Nu + N2k, of this 
sequence is closed and connected. This, however, contra­
dicts the hypothesis that k was a number for which the sets 
Nik and N2k have no common point and shows that k is the 
least number for which Nik^N2k. 

The set of points U=G(f= k) contains no point of Mi + M2. 
Assume that U contains no critical point of ƒ(#). We show 
tha t this assumption leads to a contradiction. 

LEMMA 1. U consists of at most a finite number of maximal 
connected subsets. 

PROOF. Assume the contrary; then U = ui + u2+ • • • , 
where no two of the w/s have a point in common, each Ui 
is closed, and the Ui$ are chosen so that the sum of two or 
more of them is not connected. There is at least one point 
p of U that is a limit point of a sequence of points pi, p2, • • • 
of U and no two of the p/s belong to the same U{. Since one 
of the partial derivatives, ƒ/, is different from zero at p and 
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fi is continuous in R, we may find a neighborhood D of p 
throughout which ƒ,- is different from zero. Furthermore, by 
the classical implicit function theorem* there exists a sub-
neighborhood E of D such that all points of U that lie in E 
belong to a single continuous function Xj = F(xi, • • , x3_i, 
Xj+i, - • • , xn) and hence the subset of U that lies in E is 
connected. This contradicts the hypothesis that p is a limit 
point of points of infinitely many distinct w/s. Hence 
U= U1+U2+ • • • +Ur, where r is a positive integer and 
Ü7i, i = 1, • • • , r, is closed and connected. 

LEMMA 2. 17», i = 1, • • • , r, is a closed manifold^ in the sense 
of analysis situs and its connectivity Rn-\ is given by i£n-i = 2. 

PROOF. S. S. Cairnsf has recently shown that Ui is a com­
plex in the sense of analysis situs. This is accomplished by 
breaking up Ui into (n— l)-cells. An application of the 
implicit function theorem used in proving Lemma 1 shows 
tha t Ui has each of its (n — 2)-cells incident with exactly 
two (n — 1)-cells and hence Ui has no boundary. Hence Ui 
is a closed manifold and since it consists of a single (n— 1)-
circuit and this is, of course, non-bounding, we have i?n__i — 1 
= 1, or Rn-i = 2. 

PROOF OF THEOREM 3. By Alexander's theorem§ S— Uiy 

(i= 1, • • • , r), consists of two mutually exclusive connected 
point sets d and Di. More generally, this theorem shows that 
S—^TJn^Ui consists of j + 1 mutually exclusive connected 
setsGi, • • • ,G,-+i. S i n c e 5 — ^ = i ^ c o n s i s t s of two mutually 
exclusive sets one of which contains Mi and the other con­
tains M2, it follows as an immediate consequence of a 
theorem by Alexandroff|| that at least one of the sets Ui, 
call it Ui, is such that S— Ui=Ci+Dh where C\ contains 

* See Hobson, loc. cit., p. 410. 
f See, J. W. Alexander, Transactions of this Society, vol. 23 (1922), 

pp.333 ff. 
% Unpublished work. An indication of the procedure is given by Morse, 

loc. cit., p. 355. 
§ Loc. cit., p. 343, Theorem Y. 
Il Comptes Rendus, vol. 183, p. 723, Theorem IIn. 



i929.] NON-ISOLATED CRITICAL POINTS 707 

Mi and Di contains M2. Since C is connected, it is a subset of 
Ci or D\. A reapplication of AlexandrofTs theorem yields 
U2 such that S—(Ui+U2) =Gi-\-G2 + Gz, where G contains 
Mi, G2 contains M2, and Gz contains C. For definiteness let 
Di contain M2 and C. We distinguish between two cases: 
Case I, C2 contains Mi, M2, and Ui while D2 of necessity 
contains C; Case II , C2 contains M\, Ui, and C while D2 

contains M2. No other cases can arise. 
CASE 1. Since C2 contains Ui and since ƒ(x) is continuous 

over C2+U2, it follows that f(x) assumes its maximum for 
this domain in at least one point of the domain. If this 
maximum is greater than k then the point is an interior point 
and a consideration of the difference quotients of which the 
partial derivatives of f{x) are the limits shows immediately 
that this point is a critical point and thereby contradicts our 
hypothesis. If the maximum has the value k, a similar con­
sideration of the difference quotients shows that every point 
of Ui is a critical point and likewise contradicts our hy­
pothesis. 

C A S E 2. In this case G + Ui and D2+ U2 are closed and 
mutually exclusive. Nik= [Ci+Ui]+ [D2+ C^J + Q, where 
Q cannot be vacuous since Nik is connected. If 4̂ is a point 
of Q, we find Uz so that S— Uz — Cz+Dz> where Cz contains 
A and Dz contains C. If either Mi or M2 belongs to Cz, a 
repetition of the argument of Case 1 proves the existence of 
a critical point of the type desired for Theorem 3. Hence 
both Ci and D2 are subsets of Ds and hence neither they nor 
their boundaries can contain limit points of the subset of 
Q that belongs to G- A repetition of this argument a finite 
number of times (at most r times) together with the observa­
tion that 2**3 Ui 'is closed shows that [G + Ui ] and [D2+ U2 ] 
contain no limit points of Q. Hence Nik cannot be connected, 
contrary to the manner in which it was constructed. This 
contradiction yields Theorem 3. 

COROLLARY 1.* If f(xi, * • • , xn) has two distinct minimal 

* This corollary follows directly from the proof of Theorem 3. 
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sets Mi and M\ in R, there exists at least one critical point of 
f(xi, • • • , xn) in R that does not belong to a minimal set of 
JyXi, j Xn). 

COROLLARY 2. Iff(xi, • • • , xn) is restricted so that each of 
its minimal sets contains a single point, Theorem 3 becomes 
Bieberbach1 s form of the minimax principle* 
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S Y M M E T R I C FUNCTIONS OF n-lC 
RESIDUES ( m o d ^ ) t 

BY T. A. PIERCE 

If p be an odd prime, q is said to be an n-ic residue of p 
if the congruence xn = q (mod p) has solutions; otherwise q 
is an n-ic non-residue of p. A necessary and sufficient con­
dition that q be an n-ic residue of p is that 

(1) 0(p-i>/«s=l, (mod#), 

where ô = g.c.d. (p— 1, n). The numberf of n-ic residues of 
a given prime p is (p—l)/ö. 

I t is with the symmetric functions of these n-ic residues 
that this paper deals. 

By means of (1) we readily prove that the product of two 
n-ic residues is an n-ic residue and that the product of an 
n-ic residue by an n-ic non-residue is an n-ic non-residue. 

Put (p— l ) /ô = r and let gi, g2, • • • , qr be the set of all 
distinct n-ic residues of p. Then g^i, qiq%, • • • , q%qr is the 
same set in different order, for the assumption that two mem­
bers of this last set are congruent leads to the conclusion 
that two members of the first set are not distinct. 

* Loc. cit., p. 140. 
t Presented to the Society, March 30, 1929. 
% Dirichlet-Dedekind, Zahlentheorie, 4th éd., 1894, p. 74. 


