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Since the Hamiltonian groups of order 2m constitute such 
a well known and important category of groups it may be of 
interest to note here that it results from the preceding 
developments that these groups are characterized by the 
facts that they admit three-fourths automorphisms and 
that the continued product of these three automorphisms is 
the identity. This category is also characterized by the fact 
that it is composed of the groups whose three three-fourths 
automorphisms are inner automorphisms of order 2. The 
entire category of Hamiltonian groups may be similarly 
characterized by the fact that it is composed of the groups 
whose centrals involve no operators of order 4 and which 
admit such three three-fourths automorphisms that in their 
continued product all the operators of the central correspond 
to their inverses and at least one operator in each central 
co-set corresponds to itself. 
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1. Introduction. In the space problem of the calculus of 
variations, whether treated in the parametric form as by 
Bliss and Mason,f or in terms of angle as by Riderf or Sakel-
lariou,§ the Euler equations are three in number but con­
nected by a relation. Thus but two of the equations are 
independent. The object of this paper is to show that two 
independent Euler equations arise from variations parallel 

* Presented to the Society, April 16, 1927. 
f Mason, M. and Bliss, G. A., The properties of curves in space which 

minimize a definite integral, Transactions of this Society, vol. 9 (1908), 
pp. 440-466. 

% Rider, P. R., The space problem of the calculus of variations in terms of 
angle, American Journal of Mathematics, vol. 39 (1917), pp. 241-256. 

§ Sakellariou, N., The space problem of the calculus of variations, Palermo 
Rendiconti, vol. 44 (1920), pp. 53-68. 
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to principal normal and binormal, respectively, of the curve 
giving an extremum. Tangential variations yield nothing but 
an identity in partial differentiation. The two independent 
Euler equations may be replaced by a vector equation which 
involves a certain vector Q. This vector plays an important 
part in the entire theory covering the first and second 
variations of the integral. 

2. The Euler Equations. Consider the integral 

/ = f F(r,t)ds 

taken along a curve V in space joining two fixed points. 
Here F is a scalar point function of the position vector r 
and its derivative dr/ds = t (the unit tangent vector) which 
has continuous partial gradients of the second order with 
respect to r and t. We note in passing that this formulation 
of the problem applies equally well to variations in space 
or on a given surface. 

Now let the curve I \ r = r(Y), give I an extreme value. We 
replace T by another curve IV 

(1) rx = r + e(ut + vp + wb) 

between the given points, where u, v, w are three independent 
functions of 5 of class C' which vanish for s = 0 and s = l, 
and r, p , b are unit vectors in the direction of the tangent, 
principal normal and binormal along T, chosen so that tpb 
form a right-handed set. Thus (1) gives explicit representa­
tion to variations in the directions of r, p and b. 

The value of I along Ti is 

7(e) = f F(r1)t1)ct>(s)e)ds) 

where 
0(^,e) = dsi/ds, 

and if V rF, VtF denote partial gradients of F with respect 
to r and r, 
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Cl (fdri dti 1 dt) 

(2) /'(€) = j \\^^^+—^hFj4>+F—jds. 

On differentiating (1) with respect to e and with respect to 5 
and making use of Frenet's formulas: 

dt dp db 
— = Kp, — = — at + rb, — = — rp, 
ds ds ds 

we obtain 
dti 

(3) = ut + vp + wb, 
de 

(4) ti<j)(s,e) — (1 + eu' — env)t + e(KU + v' — rw)p 

+ e(rv + w')b 

where the primes denote differentiation with respect to s. 
We now differentiate (4) with respect to e: 

dti d<t> 
(5) $ + t\ = (u' — KV)t + (KU + v' —• TW)p 

de de 
+ (TV + w')b, 

whence 
d<t> 

(6) — = (y* —. Kv)t» ti + (KU + v' — TW)P* ti 
de 

+ (TV + w')b*t\. 

Putting € = 0 in (4), (6) and (5) in turn now gives 

<t>(s,0) = 1 , <£«(s,0) = u' — KV, 

dti 

de 
s= (KU + v' — TW)p + (rü + *£>')*> 

= («*)' + (vp)' + (wb)' + (KV - «')*. 

Finally we note that for a given r, £ can only vary over a 
unit sphere; hence t*VtF = 0. With these results and (3), 
(2) becomes 

r(o) = f {(ut + vp + wb).VrF+[(uty + (vPy 

+ (wb)']*VtF + (u' - Kv)F}ds, 
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and by the usual integration by parts 

/'(O) = f iu(t.VrF-t ViF ) 
Jo K \ ds ds / 

+ v(p.VrF-~p VJP -KF\+ w(b-VrF-b—V*FH ds. 

Putting v = w = 0, w = u = 0, u=v = 0 in turn, the condition 
/'(O) = 0 yields the three Euler equations: 

d dF 
(7) t-VrF - t VtF = 0, 

ds ds 
d 

(8) p-VrF - p VIF-KF = 0, 
ds 

d 
(9) b*VrF - b V ^ = 0. 

ds 
3. The Euler Equation for the Tangential Variation is an 

Identity. To show this we differentiate the relation t • VtF = 0 
with respect to s : 

dt d 
VtF+t VtF = 0. 

ds ds 
Thus (7) reduces to an identity in partial differentiation, 

dF dr dt 

ds ds ds 

The two independent Euler equations thus arise from varia­
tions parallel to the principal normal and binormal. 

4. The Euler Equation in Vector Form. Equations (7), 
(8), (9) are the t, p and b components of the vector equation 

dQ 
(10) VrF = 0, where Q = Ft + AtF. 

ds 
This equation puts in evidence three cases of immediate 
integrability, namely when VrF is zero, parallel to a fixed 
vector A, or perpendicular to A; in these cases Q, k*Q 
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or k*Q are respectively constant. Equation (10) is of the 
second order when V * 0 T ^ O ; it degenerates when Q is a 
function of r alone, that is, only when F has the form 

In a paper presented to the Society,! I have shown that 
(10) follows directly from the condition / ' ( 0 ) = 0 by using 
variations of an arbitrary but fixed direction, ri = r + evc, 
where c is a constant vector. The second variation then takes 
the form / " ( 0 ) = c # <£#c, where $ is a tensor of the second 
order. 

To show the part played by the vector 0 in the general 
theory we merely state the following results. The Weier-
strass-Erdmann corner condition is 

0(r,*+) = 0 ( r , t - ) . 

In a regular problem the tensor V<Q, which is planar and 
symmetric, is not zero; its second scalar invariant (in the 
sense of Gibbs) must be positive or zero in the case of a mini­
mum. This is the analogue of the Legendre condition. 

If t = t* in a field of extremals and Q* = 0( r , t*), the Euler 
equation gives 

t* x rot Q* = 0 

in this field. The Hubert invariant integral is 

/* = fo*.tds. 

From this we have the fundamental theorem of Weierstrass 

VI = f ( 0 - Q*)'tds. 

The integrand ( 0 —©*)•* is the E-function. The trans-
versality condition is simply 0* • t = 0. 

In the corresponding problem on a surface of unit normal 
n, the Euler equation is 

f December 1, 1928, The calculus of variations from a vector standpoint. 
See this Bulletin, vol., 35 (1929), p. 153. 
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"x<y~?-)=o ' 
when Q is defined as above. The tensor V<Q is now symmetric 
and linear and its first scalar invariant must be positive or 
zero in the case of a minimum. In a field of extremals 

n . r o t 0 * = 0. 

The Hubert integral, the E-function and the transversality 
condition are the same as before, t The last equation and 
Q*»n = 0 show that Q* is the surface gradient of a scalar 
function W. The curves W = const, are the transversals of 
the field. 

We note, finally, that analogous results hold in the 
problem of finding an extremum for a surface integral 

/ = ƒ' F{r,n)d<x 

bounded by a fixed closed curve. The Euler equation in this 
case is 

n*VrF + div P = 0 where P = Fn +VnF 

and div denotes a surface divergence. That P has the same 
general form as Q is apparent. If n = n * in a field of extremal 
surfaces and P* = P(r, n*), then 

d ivP* = 0. 

The Hubert integral, the £-function and the transversality 
condition are respectively 

f P*.ndcr, ( P - P * ) . n , P * . n = 0. 

These results will be developed elsewhere. 

THE UNIVERSITY OF CINCINNATI 

t From this fact we have an immediate proof of a theorem given by 
Douglas in this Bulletin (vol. 32 (1926), pp. 669-674) to the effect that 
transversality of an integral relative to a surface S is the section by S of 
its space transversality. 


