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T H E USE OF CONTINUED FRACTIONS IN T H E 
DESIGN OF ELECTRICAL NETWORKS* 

BY T. C. FRY 

1. Introduction. The literature on the subject of elec­
trical circuit theory deals very largely with one type of 
problem: "Given an electrical system and the driving force 
which is imposed upon it, to find how it responds." 

The converse problem, namely "Given a known driving 
force and the response which it is desired to produce, to find 
a system which will so respond," is much less frequently 
dealt with in the literature. It is this problem with which 
the present paper is to deal.f 

About the electrical side of the problem we need only say 
that, whatever the language in which the engineer may 
phrase his requirements, they can always be satisfied pro­
vided we can produce one or more networks of preassigned 
impedances. It is, then, no serious restriction upon the prac-

* An address presented at the request of the program committee at the 
meeting of this Society at Cincinnati, December 1, 1928. 

f Those who are interested in following the earlier literature will find 
the following references helpful. They will also give some idea of the 
technical problems to which the theory is applicable. 

Fry, U. S. Patent #1,570,215, 1926, filed June 1921. 
Zobel, Theory and design of uniform and composite electric wave filters, 

Bell System Technical Journal, vol. 2 (1923), p. 1. 
Bartlett , A note on the theory of artificial telephone and transmission Unes, 

Philosophical Magazine, vol. 48 (1924), p. 859. 
Bartlett , Properties of the generalized artificial line, Philosophical 

Magazine, vol. 1 (1926), p. 553. 
Cauer, Die Verwirklichung von Wechselstromwiderstanden vorgeschrie-

bener Frequenzabhangigkeit, Archiv fiir Elektrotechnik, vol. 17 (1926), 
pp. 355-388. 

Bartlett , British Patent #290,701, 1928, filed January 1927. 
Mead, Phase distortion and phase distortion correction, Bell System 

Technical Journal, vol. 7 (1928), p. 195. 
Zobel, Distortion correction in electrical networks with constant resistance 

recurrent networks, Bell System Technical Journal, vol. 7 (1928), p. 438. 
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ticability of our theory from a technical standpoint to con­
fine ourselves entirely to the design of networks with given 
impedance properties. 

Our point of departure is a very simple observation regard­
ing the ladder-type network shown in Fig. 1. The ordinary 
laws of circuit theory lead immediately to the formula* 

(1) F(p) = / i + 

/a + 
F4 + • • • 

If, then, the various J's and F's are known, we can write 
down F(p) at once. For example, if all the series elements 

o / , 

F I G . 1 

are resistances n, r3, • • • , and all the shunt elements capaci­
ties c2, c*, - - - , (1) will have the form of the Stieltjes frac­
tion 

1 
(2) F(p) = n + — 

C2p + 
1 

*-3 + 

Conversely, if we are given the problem of designing a 
network the impedance of which is to be some known func­
tion of frequency, and if we can expand this function F(p) 
in a continued fraction of the Stieltjes type, we can cer­
tainly furnish the required network; for we need only cause 
the successive resistances in our ladder structure to be 
equal to the successive constant terms of the fraction, and 
the successive capacities to the coefficients of the corre­
sponding terms in p. 

* The admittances F»- are reciprocals of the corresponding impedances 

/*. 
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We can, then, apply the entire theory of Stieltjes fractions 
directly to the problem of network design. But there are 
many physical networks—even many networks of the ladder 
type—whose impedances cannot be expanded in the form 
(2), though they can be expressed in the form (1) if the J ' s 
and F's are not restricted to be constants and multiples of p. 
For example, the simple function f 

(3) F*(p) 
2p + 3 

P + 2 

cannot be represented by a Stieltjes fraction, though it can 
be written in the form 

F*(p) = 1 + -

1 + 
1 

+ 1 
which is quite suitable for purposes of design. The Stieltjes 
fraction (2), in other words, is too special for our needs. 

i / W W -

r' 
fiy — ah" 

($y~-ah ^ (iy—ah yh 
; py-ah 

F I G . 2 

-vJU&k 

F I G . 3 

s/VWV 

**- j9y q/3 

*ah — ($y ah-py 

F I G . 4 F I G . 5 

In the present paper we shall obtain the necessary degree 
of generality by allowing the J ' s and F s of (1) to be of the 
bilinear form 

<*p + P 
j 

yp + ô 

t The reason for the asterisk will appear later. 
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a, j8, 7 and S being positive constants. Such a bilinear form 
can always be assigned a definite design significance. For if 
(3y>a8, it can be interpreted as the impedance of the struc­
ture shown in Fig. 2 and the admittance of that shown in 
Fig. 3 ; while if /3y <a8, it can be interpreted as the impedance 
of Fig. 4, or the admittance of Fig. 5. 

2. Resumé of Theorems about Stieltjes Fractions. Ob­
viously, since the Stieltjes fraction is so closely related to 
our problem, we must have the essential facts concerning 
it before us. They are as follows. 

THEOREM 1. A Stieltjes fraction 

(4) ƒ(*) = 

1 
02 + 

asz + • • • 

converges for every value of the complex variable z, except 
perhaps certain negative real values, provided the a's are 
positive reals, and provided ^2a3- diverges.* 

THEOREM 2. The function f(z) defined by a convergent 
Stieltjes fraction can always be expressed in the form 

(5) zoo = r 
*J n 

d$(x) 

Z + X 

where <3>(x) is a monotonie non-decreasing real function of the 
real variable x, where <£>(()) = 0 and <$(oo) = l /a i . / / is not 
necessary that <£(#) be continuous .'\ 

* Stieltjes, Œuvres Complètes, vol. 2, p. 465. If Say converges, the con­
vergents of even and odd orders separately approach l imits / i (2) and fïiz), 
but the limits are not equal. As we have no interest in this case we shall 
give no further attention to it. 

The case of complex a's was afterward discussed by Van Vleck, Trans­
actions of this Society, vol. 2 (1901), pp. 262, 344. Such coefficients have 
no meaning in the problem of network design, and will therefore not be 
considered here. 

t Stieltjes, loc. cit., pp . 491, 493. 
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THEOREM 3. The function f(z) defined by a convergent 
Stieltjes fraction is therefore a regular analytic function, ex-
cept at certain points of the negative real axis* and is real 
for positive real values of z. The same is true of its recipro­
cal.] 

THEOREM 4. The function <£(#) in (5) is related to f(z) by 
the law 

(6) *(*) = ~ f ƒ(«)&, 

the path of integration extending along a circle of radius x 
about the origin, beginning at —x — iO and ending at —x + iQ.t 

THEOREM 5. Conversely, if $(#) is any monotonie non-
decreasing real function of x in the "finite" interval (0, b), 
and constant for x^b, the f unction f (z) defined by (5) possesses 
a convergent Stieltjes expansion with positive real coefficients.§ 

THEOREM 6. If <$(#) is any monotonie non-decreasing f unc­
tion of x, such that the integrals 

/» 00 

(7) I xnd$(x) 
Jo 

all exist, the function f(z) defined by (5) possesses a "formal" 
Stieltjes expansion with positive real coefficients, which, if it 
converges at all, converges to the value f(z) for all values of z 
except those on the negative real axis)\ 

* Perron, Die Lehre von den Kettenbriichen, p. 369. 
f This is readily seen as follows: If (4) converges to ƒ(2), the fraction 

_ 1 

02X + 

as+ • • • 
must converge to /i(z) = l/[zf(z)] — a,\\ for the convergents of this latter 
fraction are the corresponding convergents of the former one, divided by z 
and reduced by a\. The new fraction, however, is a Stieltjes fraction, and 
therefore/ i (3), and hence also l / / (z) , is regular everywhere except on the 
negative real z-axis. 

% This is a slight modification of the theorem as given by Perron, loc. 
cit., p. 372. 

§ Perron, loc. cit., p. 388. 
|| Stieltjes, loc. cit., p. 504. 
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Thus, if we are given a function f*(z) we can determine 
whether or not it possesses a Stieltjes expansion by the 
following systematic procedure: 

(a) First we observe whether it is real for positive real 
values of z. If not, no usable expansion is possible. 

(b) Next we investigate the singularities of f*(z) and its 
reciprocal. Unless they are all on the negative real axis no 
expansion is possible. 

(c) If they are all on the negative real axis we compute 
a function $(x) from the formula 

(8) *(*) = — ff*(z)dz, 
2TTI J 

the path of integration being that defined in Theorem 4. 
Unless it is monotonie non-decreasing, no expansion is 
possible. Even if it is monotonie non-decreasing no expan­
sion is possible unless either <£(#) is a finite constant for 
x>b, or else the integrals (7) all exist. 

(d) If the possibility of expansion is still not disproved, 
we substitute our <ï>(x) in (5) and evaluate the integral. 
The f(z) which results may or may not be the function 
f*(z) with which we started. If it is not, f*(z) can neither be 
expressed in the form (5), nor expanded in a Stieltjes frac­
tion. But if ƒ(z) is identical with f*(z), we know either that 
a convergent expansion does exist, or that it may exist, 
according as we are working under the conditions of The­
orems 5 or 6.f 

We may, then, fail to get a Stieltjes expansion for either 
of four reasons : 

(a) Because ƒ*(z) is not real when z is real and positive; 

f We say nothing about the processes by means of which the coef­
ficients are obtained after we have shown that an expansion is possible, 
for the reason tha t these processes play no part in our study. They are 
tedious, but otherwise quite satisfactory. They will be found in almost any 
discussion of continued fractions, the most satisfactory references being 
Stieltjes, Œuvres Complètes, vol. 2, p. 184, for the more familiar method, 
and Thiele, Interpolationsrechnung, p. 138, for an interesting alternative. 
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(b) Because the singularities of f*(z) or its reciprocal are 
not properly located; 

(c) Because $(#) is not of an allowable type; 
(d) Because, though ƒ*(£) gives rise to a <b(x) of suitable 

type, it is still not true that 

/

d$(x) 
z + x 

is equal to/*(2). 
We shall consider these difficulties in order, seeking in 

each case to find a means of deriving a type of fraction 
which can be interpreted electrically. 

We shall occasionally find it desirable to have separate 
names for the functions ƒ *(z) and ƒ (2). The former of these— 
that is, the function which we wish to represent in fractional 
form, and from which we obtain $(x) by the use of (6)—we 
shall call the generating function. The other—that is, the 
function to which the fraction converges if we succeed in 
getting a convergent fraction at all, and which is obtained 
from <£(#) by the use of (5)—will be said to correspond to 
<£(#). The important distinction is, that while many 
functions may generate the same $(#), only the one which 
corresponds to it is capable of Stieltjes representation. 

3. Redistribution of Singularities by Change of Variable. 
The first difficulty is inherent in the physical problem. For 
if a physical system had an impedance Z(p) which was 
complex for a real positive p = po, a real driving force which 
varied with time according to the law ev^1 would produce a 
complex current. This is absurd, since a complex current 
has no physical meaning. 

Turning next to the second difficulty, we first note that 
physically possible systems cannot have singularities in the 
right-hand half of the plane. This is easily seen in the case 
of poles, for a pole would imply that once an oscillation of 
the proper frequency were established it would persist 
forever with constantly increasing amplitude even in the ab­
sence of any sustaining force, which is obviously absurd. 
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It is not so easy to exclude the possibility of essential 
singularities, but they are never met. 

On the other hand, singularities in the left-hand half of 
the plane—or as a limiting case on the imaginary axis— 
are physically possible. In some simple cases they can be 
shifted to the negative real axis by a suitable change in 
variable, and an expansion thus obtained. 

Thus, suppose we are given a function F*(p) which, to­
gether with its reciprocal, has only pure imaginary singular 
points. Then by the transformation 

(9) z = p\ 

we will arrive at a function f*(z) ^F*(z1/2), whose singu­
larities occur at negative real values of z. From this function 
we may be able to obtain a Stieltjes fraction of the form (4), 
and if so the equivalent fraction in p, 

HP) ^ f(p2) = 
a,p* + — 

02+ ' * * 
will converge for all values of p except possibly certain 
pure imaginaries. 

Even though this F(p) proved to be identical with F*(p), 
however, it would not be suitable for the purposes of circuit 
design ; for we have no type of circuit element whose impe­
dance or admittance varies as the square of the frequency. 
However, if we were to set f*(z)^F*(zll2)/z112, we might 
arrive at a usable expansion.f For suppose we succeeded in 
finding a convergent fraction (4) the limit of which was 
identical with this f*(z). We would then have at once 

F*(P) = 

avp-\ — 

a2p ~\ 
fl8j>+ ' • • 

f We have probably introduced a new singularity at z = 0 by the intro­
duction of the new factor, but as this is an end point of the negative real 
axis, it is not objectionable. 
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This form of development is altogether satisfactory. It 
corresponds to a ladder network all the series elements of 
which are inductances and all the shunt elements con­
densers. 

Similarly, if the singularities of F*(p) and its reciprocal 
all lie on a line parallel to the imaginary axis and a units 
to the left of it, we may transfer them all to the negative 
real axis by either of the transformations! 

(10) z = (p + aY, 

or 

(11) z = p2 + 2ap. 

It is easily seen that either leads to a usable type of fraction 
provided we identify /*(V), not with F*(p), but rather with 
F*(P)/(P +j8), where 0 ^ /3 g 2a.t 

4. Fractions which Represent Functions in Island Regions. 
The function ƒ * (z) obtained from F*(p) by such transforma­
tions as (9), (10) and (11) is ordinarily multiple-valued. 

On the other hand, the function defined by any fraction 
of the form (4) must be single-valued. Hence if we succeed in 
obtaining such a fraction, it will represent one branch of 
f*(z) only. Consequently, when rewritten in terms of p, it 
will represent F*(p) over only that portion of the ^-plane 
which corresponds to this branch off*(z). In the remainder of 
the ^-plane it will converge (except, perhaps, at certain 
points of the boundary which separates the two regions), 
but usually not to the value F*(p). 

The fraction, in other words, will represent F*(p) only in 
an "island region" (espace lacunaire). For example, by 
using the transformation z = p2+p we can expand the 
function (3) into the form 

f The second of these transformations has a wider field of use than the 
first, for it carries to the negative real axis of z not only the p's on the 
vertical line mentioned, but prs in the real range ( — 2a, 0) as well. Singular­
ities within this real interval are therefore also allowable. 

J Since p = — j3 corresponds to a negative real z, the new singularity at 
this point is not objectionable. 
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(12) F(p) = 1 + 

p+1 + 1 
— + 
P 

P+l 

FIG. 6 

the remaining terms being 
alternately \/p and l/(p + 1). 
This fraction converges for 
every value of py real or com­
plex, except certain values 
with the real part —1/2. To 
the right of this dividing line 
the limit is actually equal to 
F*(p) = (2p + 3)/(p + 2). To 
the left, it is 2 / ( 1 - p). 
Fig. 6 shows the graphs of 
these functions for real values 
of p, together with certain 
points on the fifth convergent 

of the fraction (12). It is obvious that, in the region covered 
by the graph, convergence is quite rapid. 

Now the outstanding thing about this expansion is, that 
its singular line bears no relation to F*(z) whatever, but is 
determined by the character of the transformation instead. 
Had we begun with any other function and used the same 
transformation, and had we succeeded in obtaining a con­
vergent fraction for this new function, the new fraction also 
would have had this same line for a cut, and would have been 
regular everywhere else. 

5. Properties of a Particular Transformation. These 
observations at once suggest two methods of dealing with 
functions the singularities of which are not on the negative 
real axis. One is, to search for a transformation which will 
carry the singularities to the negative real axis. The other 
is, to search for a transformation which will carry them all 
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into one branch of a multiple-valued function of z, thus 
leaving in the other branch only the singularities of the 
transformation itself. In either case, of course, we must 
require that the latter singularities shall lie on the negative 
real z-axis. The second of these methods is obviously the 
more powerful one, and we shall find that an especially 
suitable transformation is 

(ap + b)(ap + p) 
(13) z = , 

(cp + d)(yp + «)' 
where the coefficients a, b, c, d, a, /3, y, 5 are all positive reals. 

I t requires only routine algebra to establish the following 
facts : 

(1) In order that the singular points of the transformation 
(13) shall be on the negative real z-axis it is necessary and 
sufficient that both 

( (by - ad)(e& -da)>0, 

\ (be - ad)(Py - ad) > 0. 

(2) The ^-transformed of the negative real z-axis consists 
of part of the negative real £-axis together with a circle 
whose center is at 

py(bc - ad) + ad(fiy - ati) 
p Q — j 

ay (be — ad) + ae(&y — ad) 

and whose radius is 
0o(bc - ad) + bd(py - ad) 

ay (be — ad) + ac(fiy — ad) 

We shall call this circle the "boundary of the transformation." 
(3) So long as (14) is satisfied, p0 is negative and r2^p0

2. 
Hence the boundary of the transformation never crosses 
the imaginary axis, though in a limiting case it may be 
tangent to it at the origin. I t may also degenerate into a 
line parallel to, and to the left of, the imaginary axis; or 
into the imaginary axis itself. We may therefore state the 
following theorem. 
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THEOREM 7. Any transformation of the type (13) which 
has its singularities located on the negative real z-axis, and for 
which all the constants a, by c, d, a, j8, 7, ô are positive or zero, 
maps a circular area in the left half of the p-plane upon one 
sheet of the z-plane, the remainder of the p-plane being mapped 
on the other sheet of the z-plane. The circular boundary may 
be tangent to the imaginary p-axis, or it may degenerate into 
a vertical straight line, but it cannot in any case enclose a portion 
of the right-hand half of the plane. 

In view of these conclusions we can rewrite (13) in one 
or the other of three convenient forms.* The first is 

r2p2 5 ^ 0 , 
(15) z — 1 , 

\2(P + S)2-P2 x = * > 

F I G . 7 

which represents the configuration shown in Fig. 7. The 
boundary of the transformation in the ^-plane, and the 
portion of the negative z-axis between the branch points, 
are drawn heavy. The letters (a), (b), • • • , in the two 
drawings represent corresponding points, and the numbers 
written below them are their coordinates. Thus (a) is the 
point z=oo , and transforms into p=— Xs/(X±1). The 
singular points of the transformation are at (b) and (c). 

* It will be noted tha t (16) is equivalent to an inversion in p, followed by 
(15) ; also tha t (17) is equivalent to a translation in p, followed by (15), and 
then by a translation in z. The set of transformations is closed under 
inversions in z. 

By setting X = l, /*=<*, r = $ = «>, and v = 0 or a in (17), we get (10) and 

(11). 
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The second form is 

(16) z = 
\*(sp + l ) 2 - 1 x ^ 1, 

which represents the configuration shown in Fig. 8. In this 
case the boundary of the transformation consists of a par t 
of the negative £-axis, together with the vertical line through 
p= — l/s. The singular points of the transformation are at 
(b )and(c ) . 

(b) (0 

z-plane 

(d) 

The third form is 

(17) Z + V = 

FIG. 8 

r2(p + M)2 

\2(p + M + *)2 - (P + M)2 

0 < v < 

s ^ 0, 

X ê 1, 

r V 

X2(s + M)2 " M2 

for which the configurations are shown in Fig. 9. They are 
similar, except for the positions of the origins, to Fig. 7. 
The singular points are again at (b) and (c). 

Finally, we notice that , if we had transformed F*(p) 
into a function of z by the use of (13), and if we had suc­
ceeded in obtaining a Stieltjes expansion for the latter, it 
would have been of the form (4), which becomes in terms of p 

1 
f{z) = _ _ _ _ _ _ _ _ _ _ t 

ai _- .—- -f-
(cp + d)(yp + ö) a2 + 
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This form in itself is not suitable for design purposes. But 

(op + b)... 1 
(18) 

(cp + d) 
-ƒ(*) 

ap + p 1 
ai h 

yp + ô ap + b 1 
a2 —- + cp + d ap + 

yp + ô + 

(*) (b) (c) 

| - * 1 > I -

s-plane 

(d) (a) 

_ - , . + , 

F I G . 9 

is suitable for such uses. So also is 

ap + 3 
(19) -b?w 

1 

# l ; + 
cp + d ap + p 1 

a2 h yp + ô ap + b 
a3 — + • • • 

cp + d 
Hence, in using the transformation (13) for design purposes 
we would usually! identify f*(z) with the transformed of 

f These are not the only possible bilinear multipliers which can be 
successfully used. However, wTe shall see tha t they serve our purpose 
remarkably well. 
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either (cp+d)F*(p)/(ap + b) or (yp + d)F*(p)/(ap+$) in 
order that F*(p) might itself appear in one of the forms (18) 
or (19). The additional factors introduce no objectionable 
singularities into f*(z), since the vanishing of either ap + b, 
cp+d, ap+fi or yp + ô leads to either s = 0 o r s = c o , both of 
which are "negative real values of z." Inspection shows, 
moreover, that unless these points are essential singularities, 
the one at 2 = 0 must be a pole, and the one at z= oo a zero. 

6. Theorems Relating to Redistribution of Singularities. 
Suppose, now, that we are given a function F*(p) whose 
singularities, together with those of its reciprocal, are all 
more than \/s units (s finite) to the left of the imaginary 
p-Sixis. Then by the use of the transformation (16), Fig. 8, 
we can obtain a function ƒ*(z) with branch points at 0 and 
— r2, and no other singularities or zeros in its one branch except 
possibly a simple zero at oo . Moreover, the length r2 of the 
cut in the s-plane may be finite. 

If on the other hand we deal with Fig. 7 and suppose that 
either the given function F*(p) or its reciprocal is singular 
at p = 0, but that all other singularities can be enclosed in 
the interior of a finite circle, it is a simple matter to show 
that all the essential facts of the last paragraph are again 
true. Hence we have the following theorem. 

THEOREM 8. From any F*(p) all the singularities of which, 
together with those of its reciprocal, lie at least 1/s units to 
the left of the imaginary p-axis, (or all the singularities of which, 
together with those of its reciprocal, except one at the origin, 
can be enclosed in the interior of a circle of finite radius), 
we can obtain a function f*(z) in at least two ways'f which, 
together with its reciprocal, will be regular everywhere in the 
cut z-plane except at the two finite branch points 0 and —r2, 
and except also for a simple zero at oo . It has, moreover, at 
all points of the cut except the ends, a regular analytic continua­
tion either from above or below. 

t Corresponding to the two methods of identification discussed in §3. 
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We shall, in this paper, have little to say about functions 
F*(p) which do not satisfy the conditions of Theorem 8, 
since they lead us into the ambiguities of Theorem 6. How­
ever, we state the following theorem without proof: 

THEOREM 9. If F*(p) and its reciprocal have no singular 
points to the right of the imaginary axis, but if the conditions 
of Theorem 8 can nevertheless not be met, the transformation 
(13) can still produce a function f * (z) the singularities of which, 
together with those of its reciprocal, are all located on the nega­
tive real axis. In this case, however, the entire negative z-axis 
is a cut, and the possibility of analytic continuation can in 
general not be asserted f or every point on it. 

If F*(p) or its reciprocal has a singular point to the right 
of the imaginary p-axis no transformation of the form (13) 
can carry it into an f*(z) the zeros and singularities of which 
all lie on the negative real axis. 

We have, then, found a way of overcoming the second of 
our difficulties; for we have found a method of creating, from 
any function F*{p) whose singularities are all to the left of, 
or on, the imaginary axis, another function f*(z) whose 
singularities are located as required by the Stieltjes theory; 
and this has been accomplished in such a way, moreover, 
that the existence of an expansion of the form (4) for f*(z) 
implies the existence of a usable expansion of the form (18) 
or (19) for F*(p) also. We now turn our attention to the 
third difficulty: the possibility that f*(z) may not generate 
a <&(x) of suitable character. 

7. Existence Theorems concerning the Auxiliary Function 
$(#) . To begin with, we introduce a definition which will 
aid us in avoiding much circumlocution. 

The function f(w) is said to be "admissibly" singular at the 
point w = w0, if it possesses there a simple pole and/or\ an 
essential singularity of such a character that% 

f We do not wish to exclude such functions as (w— Wo)lf2~\-l/(w— w0). 
t It is obvious tha t this condition excludes isolated essential singulari­

ties. It includes many algebraic and logarithmic branch points, however. 
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(20) I O - w0)
kf(w) J < M, 0 ^ I w - wQ I < 5, 

w&ertf 5 and Jlf are a?ry positive numbers other than 0 and 00 , 
and where 0 ̂  & < 1. 

We can then readily prove the following theorem. 

THEOREM 10. If the f unction F*(p) and its reciprocal have 
none but admissible singularities on the imaginary p-axis, the 
f*(z) obtained either from [(cp+d)/(ap + b)]F:il(p) or from 
[yp + 8)/(ap+@)]F*(p) by the use of (13) will have only ad­
missible singularities on the negative real axis. The same is true 
of l / /*(s). 

At all but the branch points of the transformation this is 
immediately obvious, for the character of a singularity is 
never altered by a conformai transformation. At the singu­
lar points the transformation substantially replaces p — p0 by 
(Z—ZQ)112; whence even if the additional bilinear terms in p 
happen to be singular at such a point they cannot render 
f*(z) inadmissibly singular. We need hardly fill in the details 
of the proof. 

Next we note that, since F*{p) is real for every real posi­
tive p,f*(z) is also real for every real positive z. This follows 
from a very simple study of analytic continuation in the 
^-planes of Figs. 7, 8 and 9. Then from an equally easy 
study of analytic continuation in the s-planes we find that 
f*(x+iy) and f*(x — iy) are conjugate complex. Hence, if 
we introduce the integral 

(21) G(z) = f'f*(z)dz, 

the integration being performed along any path which passes 
from the (arbitrary) positive real a to z without touching 
the negative real axis, we see at once that G(x+iy) and 
G(x — iy) are conjugate complex. But by (8) 

G(— x + iy) — G(— x — iy) 
(22) *(*) = lim — Z _ - Ï Z _ _ > IL . 

y-o 2iri 

Hence if this limit exists at all it is real. 
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As for the existence of the limit, if f*(z) is regular and 
capable of analytic continuation across the axis, or if it 
possesses a singularity of the sort (20), G( — x-\-iy) and 
G( — x — iy) approach well-defined finite limits. If on the 
other hand ƒ * (z) has a simple pole at z = — x, it may be written 
as a/(z+x)+fi*(z), where /i*(z) has the same analytical 
character as f*(z) at all other points than — x, and at — x 
satisfies (20). Then by actual integration 

1 Gi{- x+ iy) - G i ( - x - iy) 
<p(#) = —a + lim > 

2 y-*o 2iri 

where G\(z), being derived from f\{z), is known to have well-
defined limits. Hence we have the following theorem. 

THEOREM 11. Any function f*(z) which is real for real 
positive z, regular for all but real negative z, and only ad-
missibly singular for real negative z, generates a well-defined 
real function <£(#). 

We are now prepared to state, as a consequence of 
Theorems 8, 9, 10 and 11, the following theorem, which has 
been the objective of the present section. 

THEOREM 12. From any function F*(p) which is real for 
positive real values of p, which has no singularities to the right 
of the imaginary axis, and none but admissible singularities 
on the imaginary axis, at least two functions f*(z) can be pro­
duced by the use of the transformation (13), each of which will 
generate a <b(x) which is well-defined f or every x. 

If, in addition, the conditions of Theorem 8 are met by 
F*(p), <$(#) will be of limited variation, and constant for 
x>r 2 . 

Only the last paragraph of the theorem requires proof. 
That <&(#) is constant for x>r2 follows at once from (8) 
and from the fact, stated in Theorem 8, that f*(z) is regular 
for | s |>f 2 . 

To prove that $(x) is of limited variation we exclude for a 
moment the possibility of poles at the branch points, con-
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sidering only singularities of the type (20). Then, since 
f*(z), and consequently G(z) also, is regular as we approach 
the negative real axis from above and below, we have 

d$ . 1 d . 
= lim ; —[G(— x + iy) — G(— x — iy)] 

dx y-o 2iri dx 
(23) i 

= : lim [ƒ*(— x — iy) — ƒ*(— x + iy)] 
2iri y-o 

for all values of x except x = 0 and x = r2. Hence the variation 
of $(x) is 

rr2 \d<$>\ 1 rr\ . 
Var $ = I dx ^ — I \f*(—x)\dx. 

J 0 I dx I 7T •/ 0 

We now consider the half of this interval nearest the origin. 
We know that, over the range 0 < # ^ ô , (20) is satisfied. 
We also know that \f*(z) | is bounded in the interval 
bSoc^r2/2. Call its upper bound m. Then if we take M\ 

k 

as the larger of the two quantities M and (2/r2) m, it will 
be true that 

I ƒ * ( - x) I ^Mx/xk 

over the entire interval 0<x^r2/2. A similar statement 
(with M = M2) can be made for the other half of the interval, 
r2/2Sx<r2. Hence 

Var $ ^ (Mi + M2)(r2 /2)1-V(l ~ k), 

which proves our theorem, provided the singularities of f*(z) 
are of the type (20). 

If, on the other hand, f*(z) possesses a pole at either z = 0 
or z = — r2, or both, these poles will have no other effect then 
to introduce finite discontinuities into $(#) equal to their 
residues; and it is seen at once that the theorem will still be 
true. 

Let us now take stock of our study from the standpoint of 
network design. We know that, from any F*(p) which satis­
fies the conditions of Theorem 8, we can obtain an f*(z) the 
singularities of which are on the negative real s-axis, and 
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which generates a $(x) the variation of which is bounded, 
and which is constant for x>r2. We may, therefore, replace 
$(x) by the difference of two functions, &i(x) and $2(^)1 
both of which are monotonie, non-decreasing, and both 
finite for x>r2. Hence, by Theorem 5, the functions fi(z) 
and /2(z) which correspond to $i(x) and $20*0 possess 
Stieltjes fractions. That is, when the conditions of Theorem 
8 are satisfied, f*(z) generates a $(x) = $i(x) — $2(x), to 
which corresponds an ƒ(z) =fi(z) —fz(z), which can be written 
as the difference of two Stieltjes fractions. 

As it stands, this result has no practical utility, for we 
cannot connect two networks in such a way that their 
combined impedance is the difference of their separate im­
pedances. If, however, we can find a way of obtaining a 
fraction with positive coefficients the <£(#) corresponding 
to which is monotonie non-increasing, [say a fraction the 
limit of which is fi (z)], then f'(z) —fi{z)-\-f{ (z) will also 
generate the same $>(x) as f*(z), and may turn out to be 
identical with it. Such a result would be usable. This leads 
us, then, to the search for a form of fraction the $(#) of 
which is monotonie non-increasing. 

8. Functions for which <b(x) is Monotonie Decreasing. 
We can easily show that if f*(z) gives rise to a monotonie 
non-increasing $(#), certain related functions give rise to 
monotonie non-decreasing «Ê's. Chief among these are 

«ƒ*(»), l/f*(2) and/*(1A) . 
We treat first the case of zf*(z). Wherever ƒ * (3) is regular 

as it approaches the negative real axis from above and below, 
fi(z)=zf*(z) is also, and therefore either ƒ * (z) or fi*(z) can 
be substituted in (23). Thus we obtain 

— = — lim [ / i*(- x - iy) - ƒ ] * ( - x + iy)] 
dx 2-Ki y-+o 

— . \{m [ƒ*(— x — iy) — ƒ*(— x + iy)] 
2iri y-*o 

1 
lim ;y[/*(— # — iy) + ƒ*(— » + iy)]. 

2w y-*o 
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The last limit, however, vanishes owing to the finiteness of 
*( — x±iy). Hence by (23) we have 

dx dx 
or 

(24) d^x) = - xd$(x). 

On the other hand, at a pole the residue of f*(z) is — x 
times the residue off*(z). Tha t is, (24) is still true. 

The extension to singularities of the type (20) is almost 
equally simple. I t consists merely in showing that at such 
apoint both $(x + ôx) — $?(x — ôx) and &±(x + ôx) — $i(x — ôx) 
vanish with ôx. There is, then, no discontinuity at the point, 
and (24) rules at every neighboring point. Hence we may 
state the following theorem. 

THEOREM 13. If the singularities of f*(z) are all on the 
negative real axis and are of admissible type, and if it generates 
a monotonie function &(x), then the function f\{z)—zp{z) 
generates a function $±(x) which is monotonie in the opposite 
sense. More specifically, the two are related by equation (24). 

We could frame somewhat similar proofs to show that 
the <£>'s generated by f*(l/z) and l//*(z) are monotonie in 
the opposite sense to that generated by f*(z) itself. However 
we have no occasion to use them in the present paper. 

The significance of Theorem 13 for our purposes lies in 
the fact that, if /*(z) possesses a Stieltjes expansion of the 
form (4), f*{z) =zf*(z) will have the expansion 

(25) fx*(z) = — -

ai H -

az% -| 
az + • • • 

This form of expansion, therefore, is appropriate for functions 
which generate monotonie decreasing 3?'s. Moreover, in view 
of the remarks made at the end of §7, if we were given a 
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function of bounded variation, we would naturally seek to 
expand it in the sum of two fractions, one of form (4) and 
one of form (25). 

9. The Difference Function, d(z). We now have methods 
for overcoming, to a large degree, our second and third 
difficulties. But while we are thus enabled to effect an 
expansion of 

/(*) -ƒ. 
b d$(x) 

Z + X 

in a usable form, we still do not know that this f (z) and f*(z) 
are identical. We must now study this fourth difficulty. 

If we write 

8(2) = ƒ»(*) - ƒ(*) , 

we know that 

(26) — ; f 8(z)dz = 0, 
2iri J 

the integral being taken about any (every) circle of radius x 
about the origin. We ask what sort of function ö(z) can be. 
We see at once that 

(a) It is regular except, perhaps, at negative real values of z. 
This follows from the fact that it is the difference of two 
regular functions. 

(b) / / may be an entire function if f*(z) is singular at in­
finity; or if f*(z) is regular at infinity ô(z) may be a constant. 
That any entire function satisfies the requirement (26) is 
obvious. However, if f*(z) is regular at infinity, $(x) is 
constant for x greater than some finite value r2\f(z) is there­
fore also regular for \z | > r 2 . | Hence the same will be true 
of i{x) as well. 

(c) / / may have any number of isolated singular points the 
contour integrals about which are zero. Such singularities, 
however, can only occur where f*(z) is itself singular. For 
example, 

t Perron, loc. cit., p. 369. 
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1 
ô(x) = y 

(2 + XY 
which has residue zero, is possible. To establish that d(z) is 
regular wherever f*(z) is regular, we need only show that this 
is true of f(z). Let us suppose, then, that/*(z) is represented 
on a Riemann surface of any number of sheets, connected 
along certain segments of the negative real axis, and that it 
has no singularities in the interval ( — x2, —Xi). Elsewhere on 
the negative real axis it may be of any analytic character 
whatever consistent with the fact that it generates Q(x). 
Then the G(z) defined by (21) is regular for every z not on 
the negative real axis, and also for values of z between 
( — x2, — #1); though in the case of this interval it may take 
different values F\{z) and F2{z) as we approach the axis from 
above and below. It follows, then, that 

_ , Fi(-z) -F2(~z) 

2wi 

is a regular analytic function of z in the vicinity of (xi, x2). 
Along the real axis this function is, by definition, identical 
with <£(V). Then by a well known theoremf, it is also true that 

d$(x) Cxt d$ dx 

x, Z + X J a z + x J Xl dx z + x 

is regular—though perhaps multiple valued—between — x2 

and — #1. On the other hand 

and 

d$(x) 

z + x 

d$(x) 

Z + X 

are both analytic in this same region. J Since f(z) is the sum 
of these three integrals, it too must be regular in the interval 
(*i, oc2). 

t Goursat, Cours d'Analyse, vol. 2, p. 254. 
% Perron, loc. cit., p. 369. 
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(d) ô(z) does not admit of non-essential cuts. For suppose 
( — %2, —Xi) were such a cut: then it would be possible to 
effect analytic continuation not only of ô(z), but of the 
integral 

A(z) = J b{z)dz 
J a 

also, across this boundary. Let us call the value taken by 
A(z) as reached through the upper half of the plane Ai(s), 
and that reached through the lower half A2(s). Then Ai —A2 

possesses a well-defined set of derivatives, which we can 
obtain by choosing dz in any manner we like. For example, 
we may choose dz = dx if we wish. But by (26) Ai —A2 is 
identically zero along the negative real axis; hence all the 
derivatives vanish. Tha t is A1(z)=A2(z)) and the function 
d(z) is its own analytic continuation across ( — x2, — Xi). 

As a final result of all these considerations we may enun­
ciate the following theorem. 

THEOREM 14. Two functions f\(z) and f(z) which are 
regular everywhere except on the negative real axis and generate 
the same <£(#) can differ at most by a function 8(z) which is 
single-valued and regular, except perhaps at certain points where 
one or both of the functions fi and ƒ are singular.! At such 
points 8(z) may possess isolated singularities of residue zero; 
or, in case the singularities of f\ or ƒ are everywhere dense in 
an interval ( — x2, —Xi), the same may be true of ô also; but in 
this latter case the relation (26) will still be satisfied. 

A special case of peculiar interest is the type of function 
derived through the use of the transformation (13), when 
F*(p) satisfies the conditions of Theorem 8. In such cases, 
f*(z) has singularities at only — r2 and 0; hence ô(z) can 
have singularities nowhere else. Usually it is found to be a 
constant. 

f Our proof has assumed one function to correspond to $(#)• But the dif­
ference between any two functions which generate the same <ï>(x) is the sum 
of two Ô's of the type with which our proof deals, whence the theorem is true 
as stated. 
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10. An Example, As an example of this process of ex­
pansion, let us consider 

(27) ƒ*(*) = (z + i)(z2 + zyi2-z*-Zi 

a function which is everywhere regular (including 00) 
except at the winding points z = 0 and z = — 1. We wish to 
represent that branch of it for which the radical is positive 
for positive real z. We readily find that it generates 

(28) 
$(X) = (x - X2)S/2j 0 < X < 1, 

{ $(x) = 0 , 1 < x ; 

or, since it is the derivativet of <ï> rather than $ itself which 
is of interest, 

dQ x 1 
= — {x - x2)1'2 (x - x2)1'2. 

dx T 2T 

We can, then, divide <3> into a monotonie non-decreasing term 
<£' and a monotonie non-increasing term <£ƒ ' by choosing 

d& x 
: = — ( * - X2)1'2 

dx ir 
and 

d&{' 1 
— = — { x - x2)1'2. 

dx 2ir 
The function ƒ'(z) which corresponds to 3>' is found directly 

from (5) to be 

ƒ 60= f 
«/ n 

1 d& dx 

(rjQ\ - « dx z -\r x 

= z(z2 + z)1'2 - z2 - — + — • 
' 2 8 

We know, then, that this function possesses a Stieltjes ex­
pansion. 

t Since 3>(x) is differentiate, the Stieltjes integral fd$/(z-\-x) reduces 
simply to f(d$/dx) dx/{z-\-x). 
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To find the residual function ƒ (z) which corresponds to 
<f>j", we adopt the process suggested by Theorem 13 and 
compute the auxiliary function 

ƒ'(*) = - - -
z 

which corresponds to 

d<$>" 1 W 1 (x* - x)1'2 

dx x dx 2ir x 

Again, we find from (5) that 

1 / ( s 2 + s)1 '2 \ 

This also possesses a Stieltjes expansion. Then 

(30) /i '(«) =*[(** + * ) * ' * - * ] 

possesses an expansion of the type 

ƒ"(*) = ~ 
ai _| 

a2z + • • • 

By adding together (29) and (30) we get the function which 
corresponds to (28). It is 

(31) ƒ(*) = (z + | ) (s2 + zY" -z*-z + %. 

Now, by comparing this with (27), we find that the two 
differ by only a constant, which is what we would expect in 
the light of Theorem 14. 

We could also have proceeded as follows: Since $(x), 
as given by (28), decreases steadily up to # = 1 / 2 , when it 
reaches the value — l/(247r), and then increases, we may 
choose 
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$ ' = 0, 

1 1 
$ ' = (x - x 2)3/2 

24TT 3TT 

(32) 

$' 

$ 1 " 

24TT 

1 

$ ," = 

3TT 

1 

24TT 

(a: — # 2 ) 3 / 2 , 

489 

0 < x < J, 

è < x < 1, 

1 < x ; 

0 < x < i , 

2 ""C X * 

In other words, 

and 
X T \ 2 / 

1 / 1 \ 
I X) (x — 

7T \ 2 / 

(a - x*yi\ I < x < 1, 

dx 
x2)1/2, 

the values of the derivatives being zero outside the indicated 
ranges. Then by direct computation we find for f'(z) 

1 1 z2 + z 2z + 1 
n*) 

1 

4TT(2S + 1) 16 

1 z2 + z 

+ <z2 + zy /2 

^ ' ( ' • ' • T ' o ^ ) - ' ] ' 7T 2Z + 

where F(a, /3, 7 ; x) stands for the hypergeometric function 

+ 1 a P a- a + 1 • 
F(a, 0, Y Î *0 = 1 + -—* H — — -

1 7 1 - Z ' Y ' Y + l 
-x2 + 

Similarly, we set d$n/dx = — (l/x)(d${'/dx), compute 
f"(z), and then m a k e / / ' (2) = *ƒ"(*). The result is 

'i"0O = 
2TT(2Z + 1 ) 2 

1 z2 + z 

z2 + z 2z+l 
+ —-~(z2 + zyi2 

+ IT 22 + iK'-'-T'ërb)-1] 
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Adding ƒ ' and ƒƒ' together we get 

(33) f(z) = ( 1 - 1 ) - *« - Z + (z + y ) (2
2 + s)1'2. 

This result again differs from (27) only to the extent of an 
additive constant. This time, however, the constant is 
smaller than before, being 0.017 instead of 0.125. 

This value (4 — ir)/(16ir) is, in fact, the smallest difference 
which can exist between the sum of two fractions of the form 

1 

» , + — r 

and the function (27), as we can readily show by the following 
argument. 

I t is evident that, at z = oo, such a pair of fractions takes 
the value \/b\. However, it is known (Theorem 2) that 
l/&i is equal to $"(oo) . Hence the fraction will have its 
least value at oo when $"(00) is smallest. We see at once 
from the relation between <ï>" and ${' that <£"(oo) will be 
smallest when <£ƒ ' (x) is given for every x the smallest value 
which is consistent with the requirement that $ ' shall 
nowhere decrease. This, however, is obviously the function 
$i' (x) which we have adopted in (32). From it we find by 
direct computation that ^"(oo) = (4 + 7r)/(167r). This, then, 
is the smallest value which ƒ(<*>) can have. We easily see 
from (27), however, that /*(°°) = 1/8. Hence the smallest 
difference that can exist between the two is (4 — 7r)/(167r), 
which is, indeed, the constant term in (S3). 

11. The Final Process for Obtaining a Usable Expansion. 
In the discussions of §§7-10 we have tacitly assumed that 
an expansion of the form (34) is satisfactory for purposes 
of design; and so it is if z is synonymous with our frequency 
variable p, for as we have seen in §1 the two fractions then 
correspond to constructible networks. But when the func-

(34) 

d\Z-

a2+ azz + 
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tion f*(z) has been identified with (cp+d)F*(p)/(ap + b) 
or with (yp-\rb)F*(p)/(ap-\-(5) by use of the transformation 
(13), the situation is not quite so simple, and something 
still remains to be accomplished. 

To see why this is true, let us abbreviate the expressions 
(ap + b)/(cp+d) and (ap+/3)/(yp + 8) to qi and q2} so that 
z = qiq2. Then from (34) we may get a pair of fractions re­
presenting F(p)=qif(z). The terms of one of these are of 
the form aq\ and aq2 and are therefore constructible. But in 
the other, terms of the form bqx

2q2 appear, and these cannot 
be interpreted in electrical terms, f Hence the result, in 
exactly this form, is useless. 

This difficulty can be overcome by separating F*{p) itself 
into two components each of which generates an expansion 
of usable form, instead of dealing with the transformed func­
tion f*(z). 

In order to make our study somewhat more readable, 
we shall think entirely in terms of the transformation (15) 
and its accompanying Fig. 7. This is indeed quite general, 
for all distributions of singularities which can be enclosed 
by the boundary of (17) can also be enclosed by (15), and, 
as we have already observed, (16) can be obtained from (15) 
by a simple inversion on p. Then we have 

rp rp 
(35) Qi ~ j q2 = • 

(X + \)p + s (X - l)p + s 

We shall also assume F*(p) to be broken up into the sum 
of two components G*(p) and H*(p) by a procedure which 
will become clear as we proceed, and shall indicate the three 
functions of z into which they transform by f*(z), g*(z) and 
h*(z). Tha t is, jf*(*Os **(/>)» 

We shall be interested in the values of all these various 
functions along the upper and lower edges of the cut in the 

f We assume tha t f*(z) has been identified with F*(p)/qi. If it has 
been identified with F*(p)/q<z the fractions are slightly different, but still 
unsatisfactory. 
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2-plane. In the case of qi and q% we readily find them to be 

(36) 
f rqi = x ± i(r2x — x2)lf2, 

[ rq2 = — x ± i (r2x — x2)112 , 

where the upper and lower signs apply to the upper and lower 
borders of the cut, respectively. About the values of/*, 
g* and h* we can say nothing definite, but we introduce the 
notation 

(37) 

( ƒ * ( - x) = uf ± ivf, 

j g * ( - x) = ug ± ivg, 

{ A*( — x) = uh ± ivh. 

Then in terms of this notation, we readily find from (23) 
that the $'s generated by F*(p), G*(p)/q* and H*(p)/qu 

are, respectively 

(38) 

d<bf(x) 
T 

dx 
d$g(x) 

T 

dx 

d$h(x) 

»/> 

rir-

= ̂ 7 " 0 
M (r2 \ 

= uh[ 1 1 
X \ X / 

+ Vg, 

Vh-

Now, what we purpose to show is, that so long as F*(p) 
is bounded along the entire boundary of the transformation,t 
G*(p) and H*(p) can always be so chosen that the left hand 
members of the second and third of equations (38) are every­
where positive. $g(x) and $h(x) then satisfy the conditions 
of Theorem 5. From them we can therefore obtain conver­
gent Stieltjes fractions in the variable z = qiq2', whence, 
calling these fractions G(p)/q2 and H(p)/q\, respectively, we 
have 

f This condition is sufficient, but not necessary, as we shall see in §12. 
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G{p) = 

aiqi + • 

^ 2 ^ 2 ' 

(39) 

1 

azqi + - - -

H(p) = 

bxq2 + • 

b2qi • 
bsq2 + 

both of which are constructible. 
To show that this is so, we start with the first of equations 

(38) and set vg' =Vf wherever vf is positive, and vj = 0 else­
where. Similarly we put vh' =vf whei^ver vf is negative, and 
zero elsewhere, f Thus we have 

(40) vj + vh' = vf. 

Next we define two new functions of z by the formulas 

Vg dx 

(41) 
g'(s) = 

V(z) = 

l rr 

IT J a 

1 rr* 
7T J 0 

Z + X 

Vh dx 

z + x 

From (5), (40) and the first of equations (38) we see that 
f'(z) =g/(z)+h'(z) is either identical with /*(z), or else 
differs from it only to the extent of a function ô(z) the $ 
of which is everywhere zero. Further, by an argument 
essentially similar to that in §10 we may readily show that 
g'(z) and h'(z) are regular analytic functions as we approach 
the negative real axis from above and below, except perhaps 
at 0 and — r2, and are bounded at these points. By analogy 
with (37) we shall call their values along the cut 

g'(— X) = Ug ± Wg , 

h'(— x) = ui ± ivh , 
(42) 

f Any other method of division for which v'g is everywhere positive and 
Vh everywhere negative is satisfactory. 
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the Vg being by definition everywhere positive, the vrf 
everywhere negative, while uj and ui are only known to be 
bounded. 

Finally, we take the arbitrary step of defining g*(s) and 
h*(z)—and therefore also the G*(p) and H*(p) into which 
F*(p) is divided—by the equations 

/r2 \ l / 2 

**(*) = g'(z) ~ M{— + 1) , 

h*(z) = H\Z) + MOJ+I\ + «(*), 

M being a positive constant the value of which will be as­
signed later. Then we see that along the cut 

/ f 2 y /2 
g*(- x) = < ± ivg

f ± iMl 1 J , 

( f 2 \ 1/2 

— 0 ; 
and upon comparing these values with (37) we can identify 
WQ) Vg, Ufi and Vh* Substituting the values thus found in the 
second and third of equations (38), we arrive at 

(43) 

d$g(x) / r2 1/2 

rir—^L = („; + M)(— - l) + vi , 
ax \ x / 

d$h(x) (r2 V ' 2 

dx \ x / 

Now, since uj and u{ are bounded, M may be taken so 
large that the first terms are positive, while the terms 
vg' and —Vf[ are positive by definition. Hence both $g(x) 
and $h(x) are monotonie increasing and lead to Stieltjes 
fractions in g. 

Thus we are assured that expansions of the form (39) 
really exist, where G(p) and H(p) are related to F*{p) by the 
equation 

F*{p) = G(p) + H(p) +MP), 
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A(p) being some function which generates a <£> that is every­
where zero. Hence we may state the following theorem. 

THEOREM 15. If F*{p) satisfies the conditions of Theorem 
8 and is finite at the origin, it can be expressed as the sum of 
three functions G(p), H(p) and A(p)y the first two of which 
possess constructible expansions of the form (39), while the 
third generates a $ which is everywhere zero. 

We have thus avoided the difficulty to which attention 
was called at the beginning of the section. 

12. An Example. We can make the material of §11 some­
what more intelligible by means of an illustration. 

Let us consider the functionf 

?*(P) =(p2 + P + j) 
p+1 

log 
P 

By using (15) in the form 
-7)2 

(44) z = 
(p + l)2 - p2 

(which means, of course, that f = s=A = l ) , we readily con­
vert F*(p) into 

ƒ*(*) = (s + y ) (* + - + {z2 + ZY'^J log - ~ • 

Along the negative real axis this takes the value 

/ 1 \ 2 1 - x / 1 \ 
ƒ * ( — X) = ( X J l o g h 7r( xVx — X2)112 

K l \ 1-x / 1 \ 2 1 
X )(X — X 2 ) 1 1 2 l o g 7T[ X ) 

2 / x V 2 / J 
= Uf ± ivf. 

f This function has a pole at °o , and is not bounded at the points 0 and 
— 1. Thus it violates the conditions laid down in Theorem 15. The choice 
of such a function is deliberate, as it serves to emphasize tha t the conditons, 
while sufficient, are not always necessary. 



496 T. C FRY [July-Aug., 

This is the analog of the first of equations (37). 
We now define 

(45) 

f Z 1 \ 1~ 
Vg = 1 X \{x — X 2 ) 1 / 2 l 0 g 

this definition serving the purpose of making vj everywhere 
positive and v{ everywhere negative. Then we find from (41) 

g'(z) = (2 + -i-Y- i + (z2 + zy*\og~±\ 

^ ) = (z + } ) [ - i + (z+i-)iogi±l]. 
We must next find the values (42) which these functions 

take along the negative real axis. Of course the imaginary 
components vj and v£ are given by (45). The real com­
ponents are readily found to be 

(46) 

\ui'(i~x)[~1 + (i~x)logl'ïr\' 
Substituting (45) and (46) in (43), and remembering that 

r = 1, we obtain 

</*„(*) / l \ 
7T = 7rl X 1 ( 1 — X) 

dx \2 / 

r / i \ / i \ l - s i / i - x\112 

+ lM-{T-x) + x{T-x)log—\\—) ' 
= 7T( # J 

r / i \ / i \ 2 I - X - I / I - A 1 / 2 

+ r - ( T - ' ) + ( T - V ^ - T K — ) • 

W 

dx 
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Our problem now is to choose M so that these <E's will be 
monotonie non-decreasing in the interval O ^ x g l . In­
spection shows that this can be done by setting M= 1/2. 

Using this value of M we readily find from (5) that the 
corresponding functions, which we will call g(z)/qi and 
h(z)/qu are 

g(z) ( 1 V 1 \ 2 + 1 

ir = (s + 7X2+7-<"' + *,"!),08~r 
+ z- (z' + z)1'2, 

— - ( • + T ) ['+(—) h~ 
- z - 1 - (z2 + 2)1 '2. 

Both of these functions, then, have Stieltjes expansions. 
But by (44) and (35), 

z = 

Hence 

G(p) = g(z) 

and 

H{P) S *(*) : 

= ? gi = > #2 = p • 
2 ^ + 1 2 ^ + 1 

(2#+l)»Y ' 2) p 2p+\ 

( 2 H D ! V P 2 / # 

/>2 + i> 
2^ + 1 

must have expansions in the form (39). 
We see at once that 

F*(p) = G(p) + H(p) + p, 
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the extra term p being an entire function which generates 
a zero $(#) . I t occurs because F*(p) has a pole at oo. 

This result is an entirely satisfactory one from the stand­
point of design, for not only G(p) and H(p), but A(p)^p 
as well, are constructible, the resultant structure consisting 
of an inductance and two ladder networks in series. 

B E L L T E L E P H O N E LABORATORIES, 

N E W Y O R K CITY 

A CORRECTION 

B Y E. T. BELL 

Dr. M. A. Basoco has kindly pointed out to me that the 
isomorphism established in my paper in the last issue of this 
Bulletin,* is not, as there stated, partial, but complete. In 
the second sentence of §3, page 323, the word not should be 
deleted. Obviously the relation stated is identical with (B). 
On page 324 (8), the words but not should be replaced by 
the word and. The error arose from replacing a certain in­
termediary function of my first draft by \{z) ; the discarded 
function did not satisfy (B), but it failed to give a satisfactory 
analogy in some other respects. 

As the matter now stands, it is clear that more is proved 
than was stated in my paper: my revised Lucas f unctions are 
identical with the stated Weierstrassian normal forms having 
the given invariants. Complete isomorphism is possible, pro­
vided we attend in Halphen's theorem to the degenerate 
case of one period infinite. 

* A partial isomorphism between the functions of Lucas and Weierstrass, 
this Bulletin, vol. 35 (1929), pp. 321-325. 


