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1. Introduction. One of the most fundamental properties 
of analytic functions, tha t a sequence of such functions which 
converges in a region R must converge uniformly in a t least 
one subregion Ri of R, was discovered by Osgood* as early 
as 1901. It seems, however, tha t it has not yet been re­
marked that the theorem of Osgood holds also for mero­
morphic functions if, as is usual now, one extends the 
definition of uniform convergence in the neighborhood of a 
point so as to include functions having poles. 

2. Regular Convergence. Although the principal object 
of the present note is to prove the theorem we have just 
stated, it is perhaps worth while to point out that all the 
theorems used in connection with the uniform convergence of 
analytic functions can be proved more easily if one replaces 
the concept of uniform convergence by another differing only 
slightly from it. We shall say that a sequence of functions 
fn{%), meromorphic on a closed region A, is regularly convergent 
at a point zQ oî A> if for every sequence of points zh z<i, • • • , 
belonging to A, and converging towards s0, the (finite or 
infinite) limit 

lim fn(zn) 
n—•« 

existsf. We note that if this limit (which is obviously 

* W. F. Osgood, Note on the functions defined by infinite series whose 

terms are analytic functions, Annals of Mathematics, (2), vol. 3 (1901)» 
pp. 25-34. 

t Although this very concept has been already used by Hans Hahn 
for the general theory of real functions under the very pregnant name of 
"Stetige Konvergenz" [H. Hahn, Theorie der reellen Funktionen, Berlin, 
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independent of the chosen sequence) is finite at every point 
of a closed and bounded subset B of A, and if the functions 
fn(z) converge regularly at every point of B, they must also 
converge uniformly on this set. 

Moreover, it is readily seen that all the extensions of the 
concept of uniform convergence that have been made are 
included in the above definition.* 

3. Extension of Osgood's Theorem. We consider now a 
sequence of meromorphic functions fn(z) which converges 
towards a function/(s) at every (interior) point of the region 
JR. I t is well known that if there exists a subregion 5 of 
R and two positive numbers M and N such that for n>N, 
one has \fn(z) \ <M at every point of S, the sequence fn(z) 
converges regularly in S. 

Accordingly, it follows that the theorem of Osgood holds 
also for meromorphic functions, provided that the limiting 
f unction ƒ (z) is finite a t every point of R. For if this were not 
the case one could find regions Si, S2, • • • , with the property 
that JR contains Si and S& contains Sk+u and an increasing 
sequence of indices ni<n2< • • • , such that \fnk(z) | >k for 
all z in Sjfe. The regions Sk contain at least one point z0 

common to all of them. At this point the limit function can­
not be finite, and we thus read a contradiction to our 
hypothesis. 

4. Singularities Everywhere Dense. We conclude from this 
that if the theorem of Osgood is not true, the points at which 
the limit function ƒ (z) is infinite must form a set everywhere 
dense in R. 

Moreover, since we can apply the same reasoning to the 
sequence of meromorphic functions l/{fn(z) — a}, which 

J. Springer, 1921, p . 238], I take the liberty to speak here of "regular", 
instead of "continuous",convergence, because in doing this the points which 
for a long time have been called "irregular" coincide with those at which 
the convergence is not regular in the above sense. 

* See my paper, Stetige Konvergenz und normale Familien, which is to 
appear soon in the Mathematische Annalen. 
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converges in R towards the function 

1 

we see that for every finite number a the roots of the equation 
f(z)—a = 0 must form a set that is everywhere dense in R. 

5. Reductio ad Absurdum. We consider now the continu­
ous and bounded set of real functions <f>n(x,y), where 
z = x+iy, and 

[ 1 at the points of R 

for which R[fn(z)] > 1, 

•— 1 at the points of R 
4>n(%>y) = 1 r 

for which R[fn(z)] < 1, 
R[fn(z)] at the points of R 

{ for which - 1 S R [ƒ*(*) ] â 1, 

R\fn(z)] designating the real part of/„(z). 
If the theorem of Osgood does not hold for our functions 

fn(z), the functions <f>n(x, y) have the following properties: 
(a) the limit, 

lim 4>n(%,y) = 4>(x,y) 

exists everywhere in R; 
(b) for every real number a such that \a\ < 1, the roots 

of the equation 0(x, y) — a = 0 are everywhere dense in R. 
As these properties are in contradiction with the well 

known theorem of Baire,* that the limit of a sequence of 
bounded continuous functions cannot be totally discontinu­
ous, the result we have stated must be true. 

6. Questions of Connectivity. If a sequence of functions 
fn(z)> meromorphic in Ry converges everywhere in that re­
gion, the points E of R at which the sequence converges 

* See Carathéodory, Vorlesungen iiber réelle Funktionen, Leipzig, Teub-
ner, 1927, §176. 
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regularly must accordingly be everywhere dense in R. 
Moreover, E contains a denumerable set of subregions 
2?i, i?2, • • • , in which the limit function f(z) is meromorphic 
or equal to the infinite constant, and the interior points of 
Rk form also a set that is dense in R. 

If the functions fn(z) have no poles in i?, the regions Rk 
must be simply connected and, as F. Hartogs and A. 
Rosenthal* have proved in a very remarkable paper, must 
fulfill certain other conditions less easy to state. Nothing of 
this kind happens in our case. 

Consider for instance a finite or denumerable set of regions 
Ru R*y • • • > whose connectivity may be infinite. Suppose 
that no two of these regions overlap, and that every point of 
the z plane is either an interior point or a boundary point 
of some Rk or that it is a limiting point of such points. As­
sume, moreover, for simplicity that the boundary points of 
all the Rk form with their limit points a bounded and closed 
set S. 

Let fi, f2, • • • be a denumerable sequence of points on 
S such that every point of 5 is a limiting point of this 
sequence ; the f * thus must not only be everywhere dense on 
5, but an infinite number of them must cover every isolated 
point of S. 

Designate by yn the set of points which are at a distance 
\/n from S. Let zn be a point of yn such that there is no 
point of Yn nearer to fn than zn. Then the distance 
|sn —Zj'\ >l/[n(n + l)], j^n, and the distance from zn to Sis 
likewise >l/(n(n + l)). Furthermore, every point f of S is 
a limiting point of the set Zi, z2, • • • . It follows that the 
various circles Kn 

Kn: \z-zn\< — — • — , ( « = 1 , 2 , • • • ) , 
2n(n + 1) 

have no points in common, and contain no points of S. 

* F. Hartogs and A. Rosenthal, Über Folgen analytischer Funktionen, 
Mathematische Annalen, vol. 100 (1928), pp. 212-263. 
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7. Approach by Rational Functions to Zero. We consider 
now the functions 

1 1 
gn(z) = (n = 1 2 , • • • ). 
* W **2 4fi(» + l)(s - *n) - 1' 

We note that for all 2 exterior to the circle kn, 

I *•(«) I < - • 
w2 

With every number w we can associate an integer pn such 
that no point f of S is at a distance from the set of points 
*n, Sn+i, • • • , zPn greater than 1/n. 

The sequence of rational functions 
k=pn 

ƒ»(*) = 2 **(*) 

then converges identically towards zero in the whole plane. 
This convergence is regular at every interior point of each 
Rk, but the convergence is irregular at every point f of S, 
because every such point is a limiting point of poles of the 
ƒ.00. 

8. Approach by Rational Functions to Meromorphic Func­
tions. It is possible to choose the rational functions fn(z) 
such that they converge on i?& to an arbitrary function 
</>k(z)j meromorphic in Rk, and converge on S to any function 
4>{z) which may be represented as the limit of a sequence 
of rational functions. The proof of this fact can be based 
upon the proposition that any function which is meromor­
phic in a region D, bounded by regular curves and of finite 
connectivity, can be represented by a definite integral taken 
over the boundary of D, the integral vanishing identically 
outside of D. By approximating these integrals with finite 
sums of rational functions, and applying a method analogous 
to that of §7, we can prove the theorem stated above 
without great difficulty. 
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