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polar is degenerate; for p=3, n=3+1, e=1, we find again
the 2d polar is degenerate.

If n=apm+ppm+- .- +vyp?+p, i.e. €=0 in n, then all
the polars of (1, 0, 0) pass through (1, 0, 0) whether or not
this point lies on f(x, y, 2) =0.

If n<p we find no peculiarities like the above.

SYRACUSE UNIVERSITY

THE CHARACTERISTIC EQUATION OF
A MATRIX*

BY E. T. BROWNE

1. Introduction. Consider any square matrix A4, real or
complex, of order #n. If I is the unit matrix, 4 —\I is called
the characteristic matrix of A; the determinant of the
characteristic matrix is called the characteristic determinant
of A4; the equation obtained by equating this determinant
to zero is called the characteristic equation of A; and the
roots of this equation are called the characteristic roots
of A. If 4 happens to be a matrix of a particular type cer-
tain definite statements may be made as to the nature of its
characteristic roots. For example, if 4 is Hermitian its
characteristic roots are all real; if 4 is real and skew-
symmetric, its characteristic roots are all pure imaginary or
zero; if A is a real orthogonal matrix, its characteristic roots
are of modulus unity. However, if 4 is not a matrix
of some special type, no general statement can be made as to
the nature of its characteristic roots. In 1900 Bendixsont
proved that if a+128 is a characteristic root of a real matrix
A, and if py=ps=--- =p, are the characteristic roots
(all real) of the symmetric matrix $(4 +4’), then p;=a=pn.
The extension to the case where the elements of 4 are com-

* Presented to the Society, December 28, 1927.
t Bendixson, Sur les racines d'une équation fondamentale, Acta Math-
ematica, vol. 25 (1902), pp. 359-365.
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plex was made by Hirsch®* in 1902. In 1904 Bromwicht
further extended the theorem as follows: If o418 is a char-
acteristic root of a matrix 4 whose elements are real or com-
plex, and if p,, ps,- - -, pn are the characteristic roots (all real)
of 1(A+4"’) and 4w, - -, tu, are the characteristic roots of
1(4—4"), then a lies between the greatest and the least of
p1,-+, P, and IB | does not exceed the greatest of
Il“ll" Ty ,,U'nl-

In some cases the theorems just cited give very good limits
for the characteristic roots of a matrix, while in other cases
the limits are not so restricted. Thus in the case of a real
orthogonal matrix these theorems may merely state that the
characteristic roots lie in the square x=+1, y= +1. In this
paper we shall give a criterion which in some cases, notably
in the case of a real orthogonal matrix, give more restricted
limits than the theorems above.

2. Reduction of a Matrix to a Semi-Unitary Form. Let 4
be any square matrix of order n. Then A4’ is Hermitian
and there exists a unitary matrix x (that is, kx’=1I) such that

kAA'Y = M,

where M1 is zero except in the diagonal, and the elements in
the diagonal are the (real) characteristic roots p1, p2,: - -, Pn
of A4’. We may write

(1 M = kA¥'xd'k' = BB,

where

2) B = xA¥'.

From (1) the elements b;; of B evidently satisfy the con-

ditions

1,---,n
(3) > bibje=pdi, (G,j=1,---,n),
t

* Hirsch, Acta Mathematica, vol. 25 (1902), p. 367.

t Bromwich, On the roots of the characteristic equation of a linear substitu-
tion, Acta Mathematica, vol. 30 (1906), pp. 295-304.

} Hilton, Homogeneous Linear Substitutions, Oxford, 1914, p. 41.
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where d;; is the Kronecker symbol, and equals 1 if 7=j;
0 if 25#j. In view of the conditions (3) we shall say that
B is in a semi-unitary (semi-orthogonal, if B is real) form.
If p;=1, (¢4=1,---, n), B is unitary. We may then state
the following theorem.

THEOREM 1. If A is any square matrix of order n there
exists a unitary matrix k such that kAx' =B, where B is in a
semi-unitary form.

If M is of rank 7, k may be so chosen that p;>0,
(t=1,---,7);p:=0, t=r+1,---, n). Since p; = Z, bibi=0,
(t=7r+1,---, n), evidently b;;=0, (i=r+1,.---,n; t=1,
-+ -,n);thatis, the last # —r rows of B consist entirely of zeros,
so that B is of rank at most . Hence, B must be of rank
exactly ». Since the rank of 4 equals the rank of B, and the
rank of A4’ equals the rank of M, incidentally we have given
a proof of the following well known theorem.

THEOREM. If 4 is any square matrix of order n, the ranks of
A and AA’ are the same.*

3. The Characteristic Roots of AA’. Referring to the matrix
B defined as in (1) and (2), let us form a non-singular matrix
C = (ci;) by replacing the zeros in the last #—7 rows of B by
elements (%1, Xe2,- -+, %sa) # (0, 0,- - -, 0), such that

1, -+ ,n
(4') Zbﬂiat:o, (1::1""”;5:11"'7”—’)’
t
and, moreover, such that
1, ,n
in,a?,-;=0, (A, j=1,--,m—r; i5%])).
t
Thus, we may find (%11, Zi,- -+, T1») by determining a non-

zero solution of the »—7 linear homogeneous equations (4).
Having obtained (x1u,---, x1,) we may proceed to find

* Hilton, Homogeneous Linear Substitutions, Exercise 4, p. 51.
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(%21, &z, -+, $2n) by adjoining to the system (4) the addi-
tional linear homogeneous equation

1, ,n
2 Hudy = 0;
t

and so on. If >0 ""ciufi=pi, G=1,---, n), then p;>0
and if we write

T (e

the matrix x thus obtained is a unitary matrix. It is evident
from the manner in which x was built up that By’ is zero
except in the diagonal. The elements in the last # —7 places
in the diagonal are also zero, while those in the first places are
(pi)'2, the square roots of the characteristic roots of A4’.
Since By’ is real and symmetric, the characteristic roots of

N = xB'BX' = (BX')?

Xii (i)j'—:"l)"',”)’

are the squares of the characteristic roots of Bx’, and are
therefore the characteristic roots of A4’. But

N = xB'BX = xxA'&'kAx'x’ = xxA'Ax’%’ = yA'4Y,

where ¢ is the unitary matrix xx. Thus it follows* that the
characteristic roots of 4’4 are the same as those of N and
therefore of A4’. Hence we have the following theorem.

TuaeoreEM I1. If A is any square matrix of order n the char-

acteristic roots of A4’ are the same as the characteristic roots
of 4'4.
Since the unitary matrices k, x above are such that
kA’ = B, and B = xB’,
it follows at once that

kAx'x’ = BX' = xB' = xxd'% .
Hence

* Hilton, Homogeneous Linear Substitutions, p. 20.
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X' kA'x'xk = 4.
Writing k’X’k = ¢, we have the following theorem.

THEOREM III. If A is any square mairix of order n there
exists a unitary matrix ¢ such that

(5) ¢de¢ = 4'.
In this connection compare Hilton, Homogeneous Linear

Substitutions, Ex. 6, p. 124.
Since from (5)

A¢ = ¢4’ = (4g),
A¢ is Hermitian, so that we have the following theorem.

THEOREM IV. If A is any square matrix of order n, there
exists a unitary mairix ¢ such that A ¢ is Hermitian.

4. The Characteristic Roots of A. From (2) the character-
istic roots of 4 are evidently the same as the characteristic
roots of B. Suppose then that \ is a characteristic root of B

so that there exists a set (x1, %2, - -, %,) (0, 0,- -, 0) such
that

1,---,n
(6) Z bn’xt = )\xi, (’i = 1, Ty ’ﬂ).
t

Taking the conjugates of both members of each of these
equations, we have

1,---,n _
(7 > buid, = A&, (i=1,---,n).
Multiplying corresponding equations in (6) and (7), member
for member, and summing as to 7, we find

1,---,n

1 m 1o m
Z [ Z btil;si]xtd_?s =\ Z %:T;
8,t % 7

that is

1,---,n _ 1,---,n
Z pix,-i,- = A\ Z X:ZTq.
1 [
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Let G be the largest and s the smallest of the characteristic
roots of A4’. Then

AN inféi <G inf:i,
so that AN\<G. Similarly, \\=5;i. e.,
s <M =G.

In particular,_if A is unitary so that A4’ =1, then G=s=1,
so that 1=<A\=1; i.e.,, A\A=1, as is well known. Hence we
have the following theorem.

THEOREM V. If N\ is a characteristic root of a square matrix
A and if G and s are respectively the largest and the smallest
characteristic roots of AA’, then

s <M =G.
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