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SOME CANONICAL FORMS AND ASSOCIATED 
CANONICAL EXPANSIONS IN PROJECTIVE 

D I F F E R E N T I A L GEOMETRY* 

BY E. B. STOUFFER 

1. Introduction. A simplification of the methods of ap­
proach to any branch of mathematics is always very de­
sirable. This is particularly true in a geometry, where exten­
sive analytical machinery must be set up before geometric 
results can be obtained. This paper is a contribution to the 
simplification of Wilczynski's methods of attack upon plane 
and space curves in projective differential geometry.f 

A canonical form for the fundamental differential equation 
associated with the curve is determined. I t leads at once to a 
complete and independent system of invariants and co-
variants in their canonical form. The determination of the 
corresponding system in the general form involves only 
simple substitutions. An associated canonical expansion 
for the equation or equations of the curve is obtained by 
very direct methods and the geometrical significance of the 
corresponding triangle or tetrahedron of reference becomes 
easily evident. Because of the method of their derivation, 
the fundamental invariants and covariants obtained are 
those which have an immediately evident geometrical sig­
nificance. 

The methods here employed may be applied to surfaces, 
both curved and ruled in ordinary space and may also be 
extended to geometry in hyperspace. The resulting simplifi­
cations are in some cases quite remarkable. These results 
will be presented in later papers. 

* Part of a paper read upon invitation of the Program Committee at 
a meeting of the Southwestern Section of the Society, St. Louis, November 
26, 1927. 

t See Wilczynski, Projective Differential Geometry of Curves and Ruled 
Surfaces, Chapters 2, 3 and 13. 
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In a series of papers* published in recent years, Sannia 
has made a study of plane and space curves by methods 
related somewhat to those used in this paper. He employs 
the absolute calculus but the results obtained below show 
that its use is unnecessary in order to gain real simplicity. 
Moreover, the methods of Sannia by no means extend them­
selves so naturally and so simply to surfaces in ordinary 
space and to hyperspace. 

2. Plane Curves. I t is well known that all the projective 
differential properties of plane curves may be studied by 
means of a single differential equation of the form 

(A) y'"+ 3piy" + 3p2y' + p*y = 0, 

where differentiation is with respect to the independent 
variable x and where pi are functions of x. If the homo­
geneous coordinates of a curve C are three functions 
3>i(i=l, 2, 3) of x then the coefficients pi may be so de­
termined that ji form a fundamental set of solutions of (A), 
provided merely that C is not a straight line. Moreover, 
any other set of fundamental solutions Zi(i=l} 2, 3) of (A) 
may be expressed in the form 

3 

*»= Hcijjj, (l = 1,2,3), \cU\ 5^0. 

Consequently all the curves determined by (A) in this way 
are projective transformations of C. 

However, the parametric representation of C is not unique. 
A transformation of the independent variable of the form 

(1) x = </>(x), 

and of the dependent variable of the form 

(2) y = \y, 

where <fi and X are arbitrary functions of x, will not change 
the curve. Moreover, the form of (A) will not be changed 

* Rendiconti dei Lincei, (5), vol. 31, 1° sem., pp. 450-454 and pp. 503-
506; (5), vol. 31, 2° sem., pp. 17-19 and pp. 432-434; Annali di Matematica 
Pura ed Applicata, (4), vol. 1, pp. 1-18; (4), vol. 3, pp. 1-25. 
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by the above transformations but it will be converted into 
an equation with new coefficients. A function of the new 
coefficients and the new dependent variable and their 
derivatives which is equal, except for a factor, to the same 
function of the original coefficients and the original de­
pendent variable and their derivatives is said to be a relative 
covariant. If the function does not contain the dependent 
variable or its derivatives, it is said to be an invariant. 

The effect of the transformations is important. From (1) 
we have 

(3) 

dy dy2 dy 

dx dx1 dx 

dzy d2y 

dxs dx2 

dy 

dx 
<t>" 

whence, by substitution into (A), we obtain a new equation 

(4) 

where 

(5) 

dsy d2y dy 
—- + 3pi—- + 3pjr— + pzy 
dx6 dx2 dx 

i / , <t>", <t>'"\ i 

Likewise the transformation (2) gives 

(6) 
j y' = \y' -
\ y'"=\y>" 

\y' + \'y, y" = \y" + 2\'y' + \"y, 

\y'" + 3\'y" + 3\"y' + \'"y, 

whence by substitution into (4) we obtain a new equation in 
y whose coefficients Pi are expressed by the equations 

XPi = \pi + X', XP2 = Xp2 + 2\% + X", 

\p3 + 3\'p2 + Sx'^i + \'", 
( XPi = 

(7) \ __ 
I XP3 = 

where differentiation is with respect to x. 
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All of the above is well known theory.* However, for the 
purposes of the present paper it is important to notice that 
equations (3), (5), (6), (7) show the following significant 
fact. If by means of (1) and (2) equation (A) is transformed 
into a canonical f or m which is preserved if and only if 

(8) 4>" = 0, - = 0, 
ax 

then the new variable y and the new coefficients Pi and their 
derivatives are determined except for multiplication by certain 
factors. 

The resulting variable y and its derivatives will each be 
the canonical form of a relative covariant and must each 
determine a unique point in the plane. Likewise, the resulting 
coefficients P% and their derivatives must each be the 
canonical form of a relative invariant. We shall see later 
that the determination of the expressions for these invariants 
and covariants in terms of the coefficients and variables of 
(A) will involve only simple substitutions by means of 
equations (3), (5), (6), (7). 

The determination of the transformations which give a 
canonical form to our equations may be made in many ways 
and many different canonical forms may be obtained. 
I t is evident that each such canonical form must lead directly 
to an equation for the curve in the form of an expansion of 
one non-homogeneous coordinate in terms of the other. 
Since such an expansion determines the geometrical proper­
ties of the curve, we naturally desire that the canonical form 
of (A) be such as to simplify the process of obtaining these 
properties from the associated expansion. 

We now assume that our fundamental differential equation 
has been transformed into such a canonical form with coeffi­
cients Pi and variablesf x and y and proceed to calculate 

* See Wilczynski, loc. cit., Chapter III. 
t In the remainder of this paper a bar above a letter will indicate that 

it represents a function of x and that differentiation of the function is with 
respect to x. 



294 E. B. STOUFFER [May-June, 

the corresponding canonical expansion. I t is an important 
fact that we can proceed just as if the conditions to be 
imposed were actually known. 

Let yi(i—l, 2, 3) be the coordinates of a regular point* 
y on C. We may assume without loss of generality that this 
point y is given by the value x = 0 of the parameter. Then 
by the general theory of differential equations the coordi­
nates Yi of any point Y on the curve in the neighborhood of 
y may be expressed as a power series in x of the form 

Y = j>(0) + y'(0)x + ?"(0)-^ + ? ' " ( 0 ) ^ + • • • . 

When we start to substitute f or y ' ' ' (0), ;yiv(0), • • • by means 
of the assumed canonical form of our differential equation, 
we see at once that a great simplification will take place if 
Pi = 0. The first of equations (7) shows that we can make 
Pi = 0 by choosing X to satisfy the equation Xpi + X' = 0. 
Moreover, equations (5) and (7) show that the condition 
Pi = 0 will be maintained if (8) is satisfied. We shall there­
fore assume that Pi = 0 is one of the conditions imposed in 
order to give us our canonical form. Thus the canonical form 
is of the nature 

(9) y'" + 3P2y' + Pzy = 0, 

where the coefficients are determined by the substitution of 
X' = —\pi into (7) and have the form 

do) I ^ - * - * ' - * • 

I P , = Pz - 3pip2 + 2pf - p{'. 

The substitution from (5) into (10) gives 

* Throughout this paper a point with coordinates «»(*' = 1, 2, 3) in 
the plane or with coordinates a<(i = l, 2, 3, 4) in space will be denoted 
simply by a when no confusion can arise. 
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(ID 

= ( Pi V -\—^2 ), 

= 7 — ( p . - 3^p2 + 3W-' - r - r'), 

where ^ = #"'/<j>' and where P2 and P3 are the same functions 
of pi as are P2 and P3 of pi. The expressions for the deriva­
tives of P2 and P3 are obtained from (11) by simple differen­
tiation. The particular value of ^ which gives the canonical 
form is as yet undetermined. 

Substitution from (9) into the above expansion now gives* 

j» + y * + r— - (3Ptf + P350-

- [37,J!" + (3PÏ + T3)y' + Pi ? ] - -
4! 

- [(67,' + Pz)y" + (27/ + 372" - 9Ti)y' 

(12) 
«5 

+ (P3" - 3P2?3)y]|y 

- [(97/' + 37/ - 9P2
2)y" 

+ (37/ ' + 372" - 367272' - 672P3)y' 

+ (Pi' - 972 '73 - ?3
2 - 37 ,7 / )? ]—'+ • • -. 

61 
Since we are assuming that we have a canonical form, 

y%j yi , yir are the homogeneous coordinates of three fixed 
points not on a straight line. Consequently, the coordinates 
of any point in the plane may be expressed in the form 
Xiyi+x2yi "\-x*ylf • It follows that the coordinates of the 
point may be taken to be (#i, #2, ^3). The coordinates Xi 
of Y in this new coordinate system may be read directly 
from equation (12) and have the form of expansions in 
powers of x. 

* It is to be understood that in the coefficients of this expansion and 
those that follow z =0. 
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If we now pass to non-homogeneous coordinates we obtain 
the following results : 

%2 1 — 1 — t .— 
f = — = x P2X* {P{ - 7s)x* 

xi 2 8 

(13) 

+ (3Pi - 3 P 2 " + 9 P 2 ) ^ - + . . . , 

xz x2 1 _ _ _ x6 

r, = - = - - —P,*« - (6P/ - 9 P , ) -
#i 2 8 _ 5! 
+ (9ÏY + 12P3' - 9 P 2

, , ) ^ 7 + 
6! 

The elimination of x from these equations gives us the desired 
expansion 

(i4) i 
2 8 40 

- - £6 

+ (9P2" - 6P3' + 405P2
2) — + • • • 

6! 
We return now to the problem of the determination of our 

canonical form. I t is easy to see from equations (11) that 
the term 3P2 — 2P 3 = 03 in the coefficient of £5 in (14) is 
such that 

ö"3 = (^ (3P2'-2i ,3) = (^08-

Consequently, assuming that 03 does not vanish identically,* 
we can make 03 = 1 by selecting (0 /)3 = ^3. I t is evident that 
the two conditions 03 = 1 and Pt = 0 are preserved only 
if 0 " = O, X' = 0. We then have for a canonical form of (A) 

dzy __ dy _ 
(15) ~ + 3 P 2 - + P3;y = 0, 

ax6 ax 

with $3 = 1, and for the associated canonical expansion 

* It is easily seen that the identical vanishing of dz is the condition that 
C be a conic. The projective differential properties of conies are of no in­
terest. 
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dó) „ = — e + — p^ +—e + — p*? + ••• • 
2 8 40 16 

The coefficients P2 and P3 and their derivatives are all 
canonical forms of relative invariants. In order to obtain 
their general form it is only necessary to substitute the value 
of yp obtained from (</>')3 = 03 into equations (1) and their 
derivatives. Tha t the expressions thus obtained are relative 
invariants becomes evident if we take any two equations 
of form (A) which are equivalent under (1) and (2) and re­
duce each of them to our canonical form. The coefficients 
thus obtained can differ only by a factor and consequently 
the expressions for these coefficients in terms of the original 
coefficients will have the same form and can differ only by 
a factor. 

Tha t the invariants thus obtained together with 03 form 
a complete system is evident. In fact, since 3P2 ' — 2P 3 = 1 
we actually need only the invariants arising from P2 and 
its derivatives together with #3 in order to have a complete 
system. Tha t all the invariants in the latter complete 
system are independent is also evident. 

Exactly the same type of argument shows that y, yf, y" 
are the canonical forms of relative covariants which may be 
expressed in terms of the original coefficients and variables 
by means of (3), (5), (6), (7) with the now known values of 
0 " and X' substituted. Tha t the covariants thus obtained 
are independent is obvious. T h a t they form with the com­
plete system of invariants a complete system of covariants 
follows from the fact that the higher derivatives of y than 
the second can be replaced by means of equation (15). 

We have thus obtained a complete and independent system 
of invariants and covariants from our canonical form by a 
process which involves nothing more difficult than direct 
substitutions. 

The three fundamental covariants y, y', yn determine 
precisely the three vertices of the tetrahedron of reference. 
The geometric determination of these vertices is not 
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difficult and gives results obtained by Wilczynski and 
Sannia. Equation (16) gives, by the method of undeter­
mined coefficients, for the equation of the conic osculating 
C a t y 

(17) 2xz{xx - (3/2)P2xz) - X22 = 0, 

and for the equation of the cubic osculating Cat y and having 
a node at that point 

(18) 10*2X3(tfi - (3/2)?2*8) - 5*23 - 2tf3
3 = 0 . 

The tangent at (1, 0, 0), which is the point y} to one branch 
of the cubic (18) is the line x2 = 0 and the pole of this line 
with respect to the conic (17) is (0, 1,0). Since (0, 1, 0) 
is the point yf and (0, 0, 1) is the point y", it is evident tha t 
the latter vertex is the point of intersection of the line 
x2 = 0 with the tangent a t y' to the curve generated by y'. 

One of the tangents from (0, 1, 0) to the conic (17) is #3 = 0. 
The other tangent meets the cubic (18) in three distinct 
points, any one of which points may be used to determine 
the unit point of our system of coordinates. 

Equation (15) shows a t once the geometrical significance 
of the vanishing of the two fundamental invariants P2 and 
P3. If P 3 = 0 the curve generated by the point y' is a plane 
curve. If P2 = 0 the tangent a t y" to the curve generated 
by that point passes through y, that is, the curve generated 
by y" is the envelope of the line #2 = 0. 

I t is interesting to note a t this point that essentially the 
canonical expansion used by Wilczynski is obtained if the 
vertex (0, 0, 1) is transformed to the second point of inter­
section of the line x2 = 0 with the osculating conic. 

All the machinery necessary for the study of the pro­
jective differential properties of plane curves has now been 
set up. 

3. Space Curves. The projective differential properties 
of space curves can be studied by means of a differential 
equation of the fourth order of the form 

(B) y<**> + 4fry'" + 6p2y" + W + pAy - 0 . 
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V = 

f = 

1 1 _ _ _ £• 
-P--P? -2{3Pl - 8 P 3 ) -
2 4 5! _ e 
- (6P2" - 16P3' + 10P4 - 36P2

2)— + 
6! 

i * - * * * - ^ * - * * » " • 

The transformations of the variables which are permitted 
are exactly (1) and (2). In fact the methods employed and 
the equations derived in order to obtain the canonical 
expansion are obvious extensions of the methods and 
equations for plane curves. In place of equation (14) above 
we obtain in this case two equations 

(19) 

In these equations P2> ?3, 7A are the coefficients of the 
canonical form of equation (B) concerning which we know 
as yet only that ~Pi=p2—pi — p? = 0. The condition which 
shall be imposed to produce pi from pi remains to be de­
termined. In the above equations 

X2 #3 %i 

Xi X\ Xi 

where the homogeneous coordinates (#1, x2l xS} x4) of a point 
in space follow from the coordinates of the point expressed 
in the form 

xiji + x2y{ + xrfi' + xAyi". 

Equations (19) do not indicate directly the conditions 
to be imposed in order to obtain a canonical form. In order 
to link our canonical form with the geometry we shall first 
calculate the osculating cubic, the simplest osculating curve 
other than the tangent line. Since a space cubic is de­
termined by six points, the canonical expansion for the 
cubic osculating C a t y must agree with (19) up to and 
including the fifth powers of £. 

I t is easily seen that the parametric representation of the 
osculating cubic can be put into the form 
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(20) 

xi = 1 + axt + bit2 +cxt\ 

X2 = t + b2t
2 + C2t

S, 

#3 = bzt2, 

X\ = C±tS. 

From these equations the expansions for rj =xz/xi and 
Ç = x*/xi in terms of £ = X2/xi are easily obtained. If the 
coefficients of the necessary powers of £ are equated to the 
corresponding powers in (19), we obtain for the parametric 
equations of the osculating cubic 

9 _ 1 _ 
/ *i = 1 + — P42 (3P<1 - 8P3)*3, 
1 1 U ôvJ 

(21) 
Xi = 

7 _ 
= * + — Pit3, x3 

1 
= ti

) X\ = 

and for the corresponding expansions for the cubic, 

1? = 

(22) 

f = 

1 

1 

7£* 

- —P& - 2(3Pi -
4 

1 _ 1 _ 
P2?6 (3P{ 

20 90 

_ £5 1 _ 
8P3)— + P2

2 

5! 200 
- 8?3)ê

6 + • • • . 

1 

6 

E6 + 

I t now becomes evident that the projections of C and the 
osculating cubic from (0, 0, 0, 1), or y'", upon the osculating 
plane X4 = 0 will have contact of the sixth order if and only 
if the coefficients of £6 in the first equation of (19) and the 
first equation of (22) are equal, i.e., if and only if 

M = 15P2" - 40P3' + 25P4 - 81ÎV = 0. 

But the equations for the space curve corresponding to (11) 
for the plane curve show that 

M = — — ( M + 1 5 * 0 , ) , 

where* 

* The expressions for Pi in terms of p% are obtained by the substitution 
of X/== —\pi into the equations for the space curve corresponding to (7) 
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M = 15P2" - 40P3' + 25P4 - 81P2
2, ds = 2>Pi - 2P3 . 

I t follows a t once tha t , if 03T^O, we can make If = 0. The 
conditions M = 0 and Pi = 0 determine our canonical form. 

The coefficients P2, P3, P4 and their derivatives are the 
canonical form of relative invariants. There exist, of course, 
the relations obtained from M = 0 and from the differentia­
tion of this equation. The expressions for the invariants 
in terms of the original coefficients again involve only 
simple substitutions, use being made of the now known 
values of \p and V. The questions of the completeness and 
of the independence of the system are answered precisely 
as for plane curves. 

The expressions y, y', yn, y"f are canonical covariants 
which may be expressed in terms of the original coefficients 
and variables by direct substitutions. The covariants thus 
obtained, together with a complete system of invariants, give 
a complete system of covariants. 

The vertices of the tetrahedron of reference are given by 
the four fundamental covariants y, y'', y", y,n. If 03T^O, 

the plane #3 = 0 is evidently the principal plane* of C and 
its osculating cubic. The osculating cubic meets #3 = 0 
in (1, 0, 0, 0) and also in the point (3P2' - 8 P 3 , ~21P 2 , 
0, —5). The osculating plane to the cubic a t this point 
intersects the tangent to C a t y in the point (0, 1, 0, 0). 
The totality of osculating planes to the cubic intersects 
#4 = 0 in lines which envelope a conic, called the osculating 
conic, whose equation is 

7 2 P W - 40xi#3 + 15#2
2 = 0, tf4 = 0. 

The polar of (0, 1, 0, 0) with respect to this conic is the line 
x2 = 0, #4 = 0. The tangent a t (0, 1,0,0) to the curve generated 
by y' intersects x2 = 0, x± = 0 in y" which is (0, 0, 1, 0), and 

for the plane curve. The equations can be found in Chapter 13 of Wilczyn-
ski's book. The expressions for P% in terms of pi are of the same form as 
those for Pi in terms of £;. 

* Halphen, Journal de TEcole Polytechnique, vol. 28, p. 25. 
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the tangent a t this point to the curve generated by y" 
intersects x3 = 0 in yfn which is (0, 0, 0, 1). The vertices of 
the tetrahedron of reference are thus completely determined 
geometrically. These are essentially the results obtained 
by Wilczynski and Sannia for the location of the vertices. 

The canonical form of (B), 

:y<iv) + 6P2y" + 4P3 f + 7Ay = 0 

shows at once the geometrical significance of the vanishing 
of the fundamental invariants P2, -Pa» PA- In fact, the curve 
generated by y' is plane if and only if P4 = 0, and the tan­
gent a t y'" to the curve generated by this point intersects 
the line joining y and y" if and only if P3 = 0 and the line 
joining y and y' if and only if P2 = 0. 

I t is easy to make a transformation of coordinates which 
gives the canonical expansion used by Wilczynski. I t is only 
necessary to change the vertex (0, 0, 1, 0) into the point 
where the line #2 = 0, #4 = 0 intersects the osculating conic 
and the vertex (0, 0, 0, 1) into the point where the osculating 
cubic intersects #3 = 0. 

If 03 = 0, the principal plane of C and its osculating cubic 
is the osculating plane. This fact becomes evident if we 
observe tha t the coefficients of £6 are equal in the second 
expansions of (19) and (22) if 03 = O. In this case it is easy 
to verify that the tangent plane at y to the quadric osculating 
C a t y is the plane xz = 0 if 

04= Pi-2Pj+(6/5)Pl' -(81/25)ÎY = 1. 

Since 04 = 04//(<£/)4> we can make 04 = 1 by choosing (# ')4 = 04, 
if 04^O. A canonical form for (A) is thus determined in this 
case and associated with it, just as above, we have two 
expansions, and a geometrically determined tetrahedron of 
eference. 

If both 03 and 04 vanish, the curve C is a cubic and has no 
projective differential properties of interest. 
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