ON THE MAPPING OF THE SEXTUPLES OF THE SYMMETRIC SUBSTITUTION GROUP G_6 IN A PLANE UPON A QUADRIC*

BY ARNOLD EMCH

- 1. Introduction. The six permutations of three elements x_1 , x_2 , x_3 considered as projective coordinates in a plane determine an involution of sextuples of points which may be mapped on a rational surface.† I shall show that in case of the involution thus defined the map is a quadric whose relation with the plane, established with sufficient details, will lead to some interesting geometric applications. The map of every configuration on the quadric will be a configuration in the plane, invariant under the G_6 , whose geometric properties have been investigated before.‡
- 2. Mapping of the G_6 . Let ϕ_1 , ϕ_2 , ϕ_3 represent the elementary symmetric functions $\phi_1 = x_1 + x_2 + x_3$, $\phi_2 = x_2x_3 + x_3x_1 + x_1x_2$, $\phi_3 = x_1x_2x_3$, so that the general symmetric function of degree four has the form

$$y_i = a_i \phi_1^4 + b_i \phi_1^2 \phi_2 + c_i \phi_1 \phi_3 + d_i \phi_2^2,$$

depending upon three effective constants. Hence, there are four linearly independent functions y_i ; i=1, 2, 3, 4, which we may set proportional to the four projective coordinates of a point in a space S_3 . Thus to every point in (x), and consequently to every sextuple $I_6\{(x_1x_2x_3), (x_1x_3x_2), (x_2x_1x_3), (x_2x_3x_1), (x_3x_1x_2), (x_3x_2x_1)\}$, corresponds in S_3 a point (y), and as the system of sextuples is a continuous ∞ manifold, the locus of such points (y) must be a surface, which will be proved to be a quadric cone Q. For the y_i 's we may

^{*} Presented to the Society, September 9, 1927.

[†] Castelnuovo, G., Sulla razionalità delle involuzioni piane, Mathematische Annalen, vol. 44 (1894), pp. 125–155.

[‡] Emch, A., Some geometric applications of symmetric substitution groups, American Journal, vol. 45 (1923), pp. 192-207.

evidently choose any four linearly independent symmetric quartics. For every choice of four such functions we obtain a certain surface Q. But all these surfaces are obviously collinearly related. The simplest choice is

$$\begin{cases}
\rho y_1 = x_1^4 + x_2^4 + x_3^4 = \phi_1^4 - 4\phi_1^2\phi_2 + 4\phi_1\phi_3 + 2\phi_2^2, \\
\rho y_2 = x_2^2 x_3^2 + x_3^2 x_1^2 + x_1^2 x_2^2 = \phi_2^2 - 2\phi_1\phi_3, \\
\rho y_3 = x_1^3 (x_2 + x_3) + x_2^3 (x_3 + x_1) + x_3^3 (x_1 + x_2) \\
= \phi_1^2 \phi_2 - 2\phi_2^2 - \phi_1\phi_3, \\
\rho y_4 = x_1^2 x_2 x_3 + x_2^2 x_3 x_1 + x_3^2 x_1 x_2 = \phi_1\phi_3.
\end{cases}$$

A simple elimination process of ϕ_1 , ϕ_2 , ϕ_3 leads to the required relations between the y's:

(3)
$$y_1(y_2 + 2y_4) + 2y_2^2 - y_3^2 - y_4^2 + 4y_2y_4 - 2y_3y_4 = 0$$
, which is a quadric cone Q with the vertex $V(4, -2, -1, -1)$, as can easily be verified.

(4)
$$\phi_1^4 + (\mu - 4)\phi_1^2\phi_2 + (4 - 2\lambda - \mu + \nu)\phi_1\phi_3 + (2 + \lambda - 2\mu)\phi_2^2 = 0$$
,

which has $\phi_1 = 0$ as a double tangent. To a generic point R on VT correspond thus the first neighborhoods of I and J on $\phi_1 = 0$. To a plane

(5)
$$y_1 + \lambda y_2 + \mu y_3 + (2\lambda + \mu - 4)y_4 = 0$$

through V, corresponds the quartic

(6)
$$\phi_1^4 + (\mu - 4)\phi_1^2\phi_2 + (2 + \lambda - 2\mu)\phi_2^2 = 0,$$

which clearly reduces to the product of two conics of the type $\phi_1^2 + k\phi_2 = 0$. Thus a generic plane of the bundle through V cuts Q in two generatrices to which correspond in (x) two conics of the symmetric pencil $\phi_1^2 + k\phi_2 = 0$. To a tangent plane of Q corresponds a double conic $(\phi_1^2 + k\phi_2)^2 = 0$. The tangent plane at R

$$y_1 + 6y_2 + 4y_3 + 12y_4 = 0$$

touches Q along VT, and to this intersection of the tangent plane, VT counted twice, corresponds in (x) the quadruple line $\phi_1^4 = 0$.

3. Mapping of Intersections of the Quadric Cone. A generic surface F_n cuts Q in a space curve C_{2n} to which corresponds in (x) a symmetric curve C'_{4n} (curve in which the coordinates enter symmetrically). As F_n cuts VT in n points, $\phi_1 = 0$ is, in general, an M-fold double tangent of C'_{4n} . This also appears directly from the fact that in (1) ϕ_2^2 appears in y_1 , y_2 , y_3 , and ϕ_1 is a factor of all other terms in which ϕ_2^2 is not contained.

Conversely to a symmetric *n*-ic C'_n in (x) corresponds on Q a curve, whose order can easily be determined in every case. For instance, when C'_n does not pass through I and J, which is the case when C_n' contains the term ϕ_3^m , 3m = n, then a generic quartic C_4' cuts C_n' in 12m points which form 2m sextuples. To these correspond on Q, 2m points which lie on a plane of the corresponding conic K of C_4 , and which are the intersections of the curve C on Q, corresponding to C'_4 . The order of C is therefore 2m. The curve C_{2m} on Q is cut out by a surface F_m , which may possibly pass through generatrices of Q, or through the point T. For example when C'_n is a sextic, then F_m is a quadric which passes through a generatrix of Q, or is a quadric cone with its

vertex at T. This is in agreement with the counting of constants. The number N+1 of terms of a symmetric n-ic is equal to the number of positive integral solutions of the diophantine equation $\alpha + 2\beta + 3\gamma = n$ resulting from the general term $\phi_1^{\alpha} \phi_2^{\beta} \phi_3^{\gamma}$ of the n-ic, and is equal to the nearest positive integer contained in $(n+3)^2/12$. For n=6, N+1=7. The number of constants in F_2 is 10 which is reduced to 7 by the condition to pass through a generatrix of Q. To the intersection of F_2 with Q corresponds in (x) an octavic. But to the generatrix of Q, common to F_2 , corresponds a symmetric conic as a factor of the octavic, so that a sextic remains as a residual curve.

More generally F_m cuts Q in a curve to which corresponds in (x) a curve of order 4m. In order that this reduce to 3mit is necessary that a factor of order m split off. factors are of the form $\phi_1^{\alpha} \phi_2^{\beta}$, with $\alpha + \beta = m$, and F_m must pass α times through R and contains β generatrices of Q. Thus in case of n=9, m=3, F_m must be either a cubic cone with vertex at T, or a cubic surface through T and a generatrix of Q. The condition to pass through T and a generatrix of Q absorbs 5 constants of F_3 , and leaves 15 (14 effective) disposable constants. But through the intersection of a quadric and a cubic surface there are ∞ 3 other cubics, so that there are ∞ 12 linearly independent residual quintics on Q to which corresponds in (x) the same manifold of conics, which is in agreement with the number of solutions of the diophantine equation, in case of n = 9.

4. Symmetric Quartics. To a pencil of planes through a line s cutting Q in A and B corresponds in (x) a pencil of quartics with the same double tangent $\phi_1 = 0$ and with two sextuples A' and B', corresponding to A and B, as base-points outside of the double tangencies at I and J. When s is tangent to Q, the quartics of the pencil all touch each other in the points of a sextuple. Now consider any two conics K' and K'' on Q. The common tangent-planes of K' and K'' envelope two cones. Through a generic

point of Q there are two tangent-planes to each of these cones. To K' and K'' correspond in (x) two quartics C_4' and C_4'' . Every tangent plane of one of these cones cuts Q in a conic which touches K' and K''. To this conic corresponds a quartic which touches each C_4' and C_4'' in points of a sextuple, one for each C_4' and C_4'' . Hence we may state the following theorem.

THEOREM. Given two symmetric quartics C_4' and C_4'' , then there exist two ∞^+ systems of symmetric quartics of index 2, such that every quartic of each system has a sextuple contact (contact in points of a sextuple) with each C_4' and C_4'' .

To the intersection of a plane through T with Q corresponds in (x) a symmetric cubic $\phi_1^3 + \lambda \phi_1 \phi_2 + \mu \phi_3 = 0$. Let K' again be a conic not through I. Now I is the vertex of a quadric cone through K', whose tangent planes cut Q in conics tangent to K'. To these correspond in (x) cubics and a quartic respectively. This leads to the following theorem.

THEOREM. For a symmetric quartic corresponding to a generic conic on Q there exists a system of cubics of index 2 with the property of sextuple contacts with the quartic.*

5. A Problem in Closure. Let K' and K'' be again two conics on Q not intersecting in real points and O a generic point in space. O as a vertex determines with K' and K'' two cones C' and C'', which intersect O in two other conics L' and L''. Assume O such that C' and C'' have no real generatrix in common, moreover so that it is possible to construct a closed pyramid of n faces inscribed to one cone, say C', and circumscribed to C''. To the four conics K', K'', L', L'' correspond in (x) four quartics C_4' , C_4'' , D_4' , D_4'' . To a conic cut out on Q by a face of P corresponds in (x) a quartic which cuts each C_4' and D_4' in a sextuple and touches each C_4'' and D_4'' in points of a sextuple. As there

^{*}Such systems of sextuple tact cubics for the general quartic were established by A. Clebsch, Mathematische Annalen, vol. 3 (1871), pp. 45-75.

are ∞^1 such inscribed and circumscribed pyramids P the mapping upon (x) gives the following theorem.

THEOREM. Let C_4' and C_4'' be two fixed symmetric quartics in (x). Construct a quartic $C_4^{(1)}$ with a sextuple contact with C_4'' , cutting C_4' in two sextuples S_1 and S_2 . Through S_2 draw another quartic $C_4^{(2)}$ with a sextuple contact with C_4'' , which cuts C_4' in another sextuple S_3 . Through S_3 draw similarly a third quartic $C_4^{(3)}$, cutting C_4' in a sextuple S_4 , and so forth. Suppose that after drawing n such quartics, the last $C_4^{(n)}$ through S_n cuts C_4' in a sextuple S_{n+1} which coincides with S_1 . If this happens once then there exists an infinite number of such series of quartics with the closure property.

Moreover there exist two other fixed quartics D'_4 and D'_4 ' which are related to these series in precisely the same manner as C'_4 and C'_4 .

THE UNIVERSITY OF ILLINOIS

CONGRUENCES OF LINES OF SPECIAL ORIENTATION RELATIVE TO A SURFACE OF REFERENCE*

BY M. C. FOSTER

- 1. Introduction. With each line l of a rectilinear congruence let us associate the point M in which l intersects a surface of reference S. We refer S to any orthogonal system. Let α , β , γ be the direction-cosines of l relative to the moving trihedral of S at M, the x-axis being chosen tangent to the curve v=const. By congruences of special orientation relative to S, we shall mean those congruences for which the functions α , β , γ are of a special form. The present paper is concerned primarily with the case when α , β , γ are constant.
- 2. Normal Congruences. Relative to the moving trihedral the coordinates of any point P on l are

^{*} Presented to the Society, December 28, 1926.