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A NEW CHARACTERIZATION OF PLANE
CONTINUOUS CURVES*

BY W. L. AYRES

A number of authorst have given necessary and sufficient
conditions that a bounded continuum be a continuous curve.
However new conditions are always of interest as no one
characterization applies without difficulty to all problems.
It is the purpose of this paper to give a new necessary and
sufficient condition that a bounded plane continuum be a
continuous curve. Also this gives a condition under which a
subcontinuum of a continuous curve is itself a continuous
curve. Finally we prove a new property of continuous curves.

THEOREM 1. In order that a continuum N, which is a subset
of a plane continuous curve M and such that M — N consists of
a finite number of maximal connected subsetsi, be a continuous
curve, it 1s necessary and sufficient that if P1, Pa, P3, - - - 1S
any sequence of distinct poinis of a maximal connected subset
of M—N which has a sequential limit point P, then there
exists an increasing sequence of positive integers ny, g, Ny - - -

* Presented to the Society, October 30, 1926.

t For definitions relating to and characterizations of continuous
curves, see R. L. Moore, Report on continuous curves from the viewpoint of
analysis situs, this Bulletin, vol. 29 (1923), pp. 289-302. Hereafter we
shall refer to this paper as Report. See also R. L. Wilder, 4 property which
characterizes continuous curves, Proceedings of the National Academy,
vol. 11 (1925), pp. 725-728; R. L. Moore, 4 characterization of a continuous
curve, Fundamenta Mathematicae, vol. 7 (1925), pp. 302-7; H. M. Gehman,
Some conditions under which a continuum is a continuous curve, Annals of
Mathematics, vol. 27 (1926), pp. 381-4; R. L. Wilder, 4 characterization
of continuous curves by a property of their open subsets, this Bulletin, vol.
32 (1926), p. 217.

1 A point set K which is a subset of a point set M is said to be a proper
subset of M if M —K is not vacuous. A connected subset K of a point set
M is said to be a maximal connected subset of M if K is not a proper subset
of any connected subset of M.
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and a set of arcs of M —N, Py, P,y PunyPhry - - -, such that
the set P+ D 2y P, P, is closed.

Proor. A. The condition is necessary. Let P, Py, Ps, - - -
be any sequence of points of a maximal connected subset D
of M — N which has a sequential limit point P. There are
two cases to consider.

(a). If P is a point of M —N, D contains P and there
exists a circle C; with center at P which encloses no point
of N. We may suppose that for every ¢, P;# P, for if any P;
were P we could drop this point from the sequence and con-
sider the remainder. Since M is connected im kleinen, there
exists a circle C, with center at P such that 7, <7;/2, where
r; denotes the radius of C;, and such that every point of M
in the interior of C, can be joined to P by an arc* of M which
lies wholly in the interior of C;. Let #; be the smallest integer
SO that:P,,1 is interior to C;. In general there exists a circle
Ciy1 with center at P such that 7,41 <7;/2 and P,_, lies in
the exterior of C;;1 and such that every point of M in the
interior of C;y1 can be joined to P by an arc of M which lies
wholly in the interior of C;. Let n; be the smallest integer
such that P,; lies in the interior of C;;; and let P,;P denote
the arc of M (actually of M — N) whose existence is shown
above. For every i, the set P,,P+ P, , P contains an arc
PP, from P,; to P, ,. Since every arc Pp;P,,,, lies in
the interior of the circle C; and the numbers 7; approach 0
as 7 increases, the set P+Z§°=1 P,;P,,, is closed.

(b). If P is a point of N, let C; be a circle with center at
P and radius 7 so small that N and D contain points exterior
to Ci. This is possible unless N is identical with M and in
this case our theorem is obvious. Let Dy, Dy, Di3, - - - be
the maximal connected subsets of D - I(Cy).T

* That this can be done by an arc, see J. R. Kline, Concerning the ap-
proachability of simple closed and open curves, Transactions of this Society,
vol. 21 (1920), page 453 and footnote.

t If C is a circle, I(C) denotes the interior of C. If 4 and B are point
sets, 4 + B denotes the set of points common to 4 and B.
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We shall show that one of these sets, which we will
denote by D, contains infinitely many of the points P;.
If this is not true, then if C, denotes the circle with center
at P radius 7/2, for infinitely many values of %, Dy; has a
point within C; and C; contains a limit point of Dy;.. Thus
infinitely many of the sets D;; are of diameter greater than
r/4. But this contradicts the theorem that if M+ C; and
N+C; are continuous curves and N-+C; is a subset of
M+C, then M+ Cy—(N+Cy) cannot contain more than a
finite number of maximal connected subsets of diameter
greater than 7,/4.*

Let n; be the smallest integer such that D; contains P,,.
Similarly one, D,, of the maximal connected subsets of
D, - I(C,) contains infinitely many of the points P;. Let 7y
be the smallest integer greater than »; such that D, contains
P.,. Ingenerallet C;(j=1,2,3, - ) bea circle with center
at P and radius 7/ and let D; be a maximal connected subset
of D; - I(C;) which contains infinitely many points of
the sequence [P;]. Let #; be the smallest integer greater
than n;_; such that P,; lies in D;. For every j, D; contains
an arc P,;P,.,;,.T Since for every j, the arc P,;P,,, lies
interior to C; we see easily that the set P+ D _;-; Pn,Pny,, is
closed.

B. The condition is sufficient. If N is not a continuous
curve there exist] two concentric circles K; and K, and a
countable infinity of continua N, Ny, Ny, N3, - - -, such that
(1) each of these continua belongs to N, contains a point on
K, and a point on K, and is a subset of the set H which is
composed of K;+K,+I, I denoting the annular domain
between K; and K, (2) no two of these continua have a point
in common and, indeed, no one of them except possibly
N is a proper subset of any connected subset of N - H,

* See the abstract of my paper, Concerning the arcs and domains of a
continuous curve, this Bulletin, vol. 32 (1926), p. 37.

t See R. L. Moore, Concerning continuous curves in the plane, Mathe-
matische Zeitschrift, vol. 15 (1922), pp. 254-260.

I See Report, p. 296.
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(3) the set N is the sequential limiting set of the sequence of
sets N1, Ny, N3, - - -. For each 1, let 4; and B; be points of
K; - N; and K, - N; respectively. There exist arcs X:Y14
and X,Y,B of K; and K, and an increasing sequence of
integers 71, %2, n3, - - -+, such that X,Y:14 contains 4,; for
every ¢ and in the order X;Y14,4,, -+ A4 and X,V,B
contains B, for every 7 and in the order X,Y,B,,B,, - - - B.

Let P denote a point of N which lies in I. There exists
a circle C; with center at P such that (i, together with its
interior, lies in I. Let 7; be the radius of C;. Since M is
connected im kleinen at P there exists in any circle C; a
concentric circle C; such that every point of M within C;
can be joined to P by an arc of M lying wholly within C;.
Let Nu=N,;, where j has the smallest value such that
N,; contains a point Q; within Ci. There exists an arc
PQ, of M lying wholly in C;. The arc PQ, from P to Qy
contains a first point E; in common with Ny and the arc
E\P, a subset of Q,P, has a first point F; in common with
N. The set { E\F1}* contains a point P, of M—N. Let C
be a circle with center at P and radius 7, <7:/2 such that P,
and Ny lie in the exterior of C,. Let Nyp=DN,; where j has
the smallest value such that IV,; contains a point Q. within
C,. Let us determine a point P; of M — N as above. Continue
this process indefinitely each time taking C; with center at
P and radius 7;<7;_1/2 and such that P;_; and Ny;_ lie out-
side C;. Thus we obtain an infinite sequence of points Py, Ps,
P;, - - -, and continua Ny, Ny, N, - - -, such that (1)
P; belongs to M — N and lies interior to C; and thus P is
the sequential limit point of the sequence [P;], (2) {E:F:}
contains P;, where C; encloses E,F;, and {E;F;} contains no
point of Ny;+N.

Since M — N consists of only a finite number of maximal
connected subsets one of these must contain infinitely many
of the points [P;] say Py, Py, Ps, - - - . For each 1, let D; be
the maximal connected subset of M+K;+K;—(N+Nu

*If AB is an arc from 4 to B then {4B} denotes AB—(4+B).
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+Ki+K3)* which contains P;. We see easily that there
exists an integer #, such that P, does not lie in D,,. Then any
arc of M—N from P,, (ti=1) to P,,t must contain a point
of either K; or K,. There exists an integer f3># such that
D, does not contain P,,. In general there exists an integer
t;>t; such that D, does not contain P, , and thus any
arc of M—N from P,_; to P,; must contain a point of K;
or K,. Let p;=P,. Then if ki, ks, - - - is any increasing
sequence of positive integers, the set N must contain a
limit point of the set P+ D i p&: Pry, which lies on K;
or K; and thus the set cannot be closed. But this set is
closed by hypothesis. Thus the condition is sufficient.

THEOREM II. In order that a bounded plane continuum M
be a continuous curve, it is mnecessary and sufficient that (1)
for any given positive number € there are not more than a
Sfinite number of complementary domains of M of diameter
greater than e€; (2) if Py, Py, P;, - - - is any sequence of
distinct points of a complementary domain D of M which has
a sequential limit point P, then there exists am increasing
sequence of positive inlegers, ni, ns, M, - - -, and a sequence
of arcs of D, Py, Pu,y Pun,Prgy PuyPry - -+, Such that the set
P+ >0, Py P, is closed.

Proor. The necessity of condition (1) has been proved
by Schoenflies.f The necessity of condition (2) can be
proved exactly as in Theorem I since no property of the
continuous curve M was used that is not also a property of
the entire space. The sufficiency of the conditions is proved
as in Theorem I except that the fact that some one comple-
mentary domain of M contains infinitely many of the points
P,, P;, P;, - - -, which are chosen in the course of the
argument, follows from condition (1) rather than the con-
dition M — N consists of a finite number of maximal connected
subsets.

* If P;=P;, then Ny denotes Ny.

t For the proof that such an arc exists, see R. L. Moore, Concerning
continuous curves in the plane, loc. cit.

I_See Report, pp. 290, 291.
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TueoREM I11. If M is a plane continuous curve then M
cannot contain, for any positive number €, an infinite number
of mutually exclusive continua My, My, Ms, - - -, such that
(1) the diameter of each set M; is greater than €, (2) M — M;
is closed except for a set K; and if n is any positive number
there exists an integer n, so that if 1>n, then K; can be en-
closed in two circles each of radius less than 7.

Proor. Suppose that there exists a positive number €
and a continuous curve M such that M contains an infinite
number of continua Mi, M., Ms;, - - -, which satisfy re-
strictions (1) and (2) of the theorem. From condition (2) it
follows that we may divide each set K; into two subsets
K,; and K,; such that

lim d(K1;) =0 and lim d(K;) =0.*
Foreachzandj (=1, 2,3, - -,j=1, 2) let A;; be a point
of Kj;, unless K;; is vacuous. For no value of ¢ can both
K,; and K,; be vacuous. Several cases arise here according
to the existence or non-existence of the various points 4 ;;
but we can see easily that there exist a point 4 or two points
A and B and an increasing sequence of integers #i, ns,
ns, - -+ -, such that either (1) Ki.; is vacuous for each
i, and A4 is the sequential limit point of [Azn;], (2) Ko is
vacuous for each 7 and A is the sequential limit point of
[41.:], (3) all of the points of the sequences [A;.;] and
[A42,;] exist and A is the sequential limit point of each
sequence, or (4) all of the points of the sequences [41,;] and
[A43,] exist and 4 and B are the sequential limit points of
the sequences [41,;] and [4z.;] respectively (4B). For
cases (1), (2) and (3), let t=¢; for case (4) let t=d(4, B).
By condition (2) of the hypothesis of the theorem, there
exists an integer £y so that if 2> k; then

d(Ki)<t/12  and  d(Ks,) <t/12.
* If K is a set of points the notation d(K) denotes the diameter of K.

If A and B are two points the notation d(4, B) denotes the distance from
A to B.
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Also there exists an integer k, so that if 7>k then either

Case (1) d(Azn;, A) <t/12,
or
Case (2) d(Ain, A) <t/12,
or

Case (3) d(din, A)<t/12 and d(d4zn;, 4) <t/12,
or
Case (4) d(Ain, 4)<t/12 and d(A42.;, B) <t/12.

In any case if ks=Fk1+ky and 7>k; then the circle C;
with center at 4 and radius {/6, or the circles C; and C.
with centers at 4 and B and radii ¢/6, enclose every point
of K,;. For every ¢>k;, M,; contains a point p; such that
d(4, p;)>1t/3 and d(B, p;) >t/3 (if B exists). The sequence
M., M., M,, -+ -, contains a subsequence M, M, M,

-, such that (1) for every i, if M;=M,; then j>ks,
(2) for every 1, if Mi=M,; and M= M,, then j<m,
(3) the points pi, P, Ps, + - - ¥ have a sequential limit point
P. It follows that M contains P, that d(P, 4)=¢/3 and
d(P, B) =2t/3 (if B exists) and that if C; is a circle of radius
/6 with P as a center then no point of any set K; is within
Cs. As M is connected im kleinen at P the circle C; encloses
a concentric circle Cy such that every point of M within C, can
be joined to P by an arc of M which lies entirely in C;. Let
ps be the first point of the sequence [#;] within the circle
Cs. There exists an arc « from %, to P which lies wholly in
Cs. Let an=M, - @ and ag=a—a;. Asaisconnected one of
these sets must contain a limit point of the other. The set ¥ ,
and consequently ai,isclosed. Then a; must contain a limit
point ¢ of as. As M, contains oy and M— I, contains
as, by definition ¢ must belong to K,. But no point of K, is
within C; while « is entirely within C;. Thus the supposition
that M contains an infinite set of this type has led to a
contradiction.

The preceding theorem implies as an immediate corollary
the following rather useful result.

* If M; =M, then P; denotes Pr;-
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TuEOREM IV.* If M is a plane continuous curve then M
cannot contain, for any positive number €, an infinite number
of arcs of diameter greater than e which are mutually exclusive
except possibly for common end-points and such that if o is
any one of this set of arcs then M — { a} s closed.

That Theorem I no longer remains true when the con-
dition that “M — N consists of a finite number of maximal
connected subsets” is removed, even with the addition of
the condition that ‘“for any positive number ¢, M/ — N contains
only a finite number of maximal connected subsets of diam-
eter greater than ¢’ is shown by the following example.
The modified conditions are necessary but not sufficient.

Let IV denote the set of points consisting of the intervals
from (1, 0) to (0, 0) and from (0, 1) to (0, 0) together with the
intervals from (1, 1/7) to (0, 1/7) for every positive integer <.
Let M be the set of points consisting of IV together with the
intervals from (j/z, 1/7) to (j/i, 0) for every positive integer
j <17 and for every positive integer z. The modified conditions
are then satisfied, but IV is not a continuous curve.

Theorem 111 gives a necessary condition that a bounded
continuum be a continuous curve. The following example
shows that this condition is not sufficient:f Let M be an
indecomposable continuum of diameter = 2e and let n <e/10.
Now suppose that My, M,, Ms, « - - is any sequence of mutu-
ally exclusive subcontinua of M of diameter greater than e.
As each set M; is a proper subcontinuum of an indecompos-
able continuum it is a continuum of condensation of M.}
Thus for each 7, K;=M,. Then no matter how large 7is, K;
cannot be enclosed in two circles each of radius less than 7.
Thus M satisfies the condition but is not a continuous curve.

THE UNIVERSITY OF PENNSYLVANIA

* This theorem was presented to the Society October 31, 1925. I am
indebted to Dr. H. M. Gehman for the suggestion that this theorem might
be generalized. The resulting study led to Theorem III of this paper.

+ This example is due to Professor J. R. Kline.

t Cf. Z. Janiszewski and C. Kuratowski, Sur les continus indécom-
posables, Fundamenta Mathematicae, vol. 1 (1920), pp. 210-222.



