A NEW CHARACTERIZATION OF PLANE CONTINUOUS CURVES*

BY W. L. AYRES

A number of authors† have given necessary and sufficient conditions that a bounded continuum be a continuous curve. However new conditions are always of interest as no one characterization applies without difficulty to all problems. It is the purpose of this paper to give a new necessary and sufficient condition that a bounded plane continuum be a continuous curve. Also this gives a condition under which a subcontinuum of a continuous curve is itself a continuous curve. Finally we prove a new property of continuous curves.

THEOREM I. In order that a continuum N, which is a subset of a plane continuous curve M and such that M-N consists of a finite number of maximal connected subsets \ddagger , be a continuous curve, it is necessary and sufficient that if P_1 , P_2 , P_3 , \cdots is any sequence of distinct points of a maximal connected subset of M-N which has a sequential limit point P, then there exists an increasing sequence of positive integers n_1 , n_2 , n_3 , \cdots

^{*} Presented to the Society, October 30, 1926.

[†] For definitions relating to and characterizations of continuous curves, see R. L. Moore, Report on continuous curves from the viewpoint of analysis situs, this Bulletin, vol. 29 (1923), pp. 289-302. Hereafter we shall refer to this paper as Report. See also R. L. Wilder, A property which characterizes continuous curves, Proceedings of the National Academy, vol. 11 (1925), pp. 725-728; R. L. Moore, A characterization of a continuous curve, Fundamenta Mathematicae, vol. 7 (1925), pp. 302-7; H. M. Gehman, Some conditions under which a continuum is a continuous curve, Annals of Mathematics, vol. 27 (1926), pp. 381-4; R. L. Wilder, A characterization of continuous curves by a property of their open subsets, this Bulletin, vol. 32 (1926), p. 217.

 $[\]ddagger$ A point set K which is a subset of a point set M is said to be a proper subset of M if M-K is not vacuous. A connected subset K of a point set M is said to be a maximal connected subset of M if K is not a proper subset of any connected subset of M.

and a set of arcs of M-N, $P_{n_1}P_{n_2}$, $P_{n_2}P_{n_3}$, \cdots , such that the set $P+\sum_{i=1}^{\infty}P_i$ $P_{n_{i+1}}$ is closed.

PROOF. A. The condition is necessary. Let P_1, P_2, P_3, \cdots be any sequence of points of a maximal connected subset D of M-N which has a sequential limit point P. There are two cases to consider.

- (a). If P is a point of M-N, D contains P and there exists a circle C_1 with center at P which encloses no point of N. We may suppose that for every i, $P_i \neq P$, for if any P_i were P we could drop this point from the sequence and consider the remainder. Since M is connected im kleinen, there exists a circle C_2 with center at P such that $r_2 \le r_1/2$, where r_i denotes the radius of C_i , and such that every point of M in the interior of C_2 can be joined to P by an arc* of M which lies wholly in the interior of C_1 . Let n_1 be the smallest integer so that P_{n_1} is interior to C_2 . In general there exists a circle C_{i+1} with center at P such that $r_{i+1} \leq r_i/2$ and $P_{n_{i-1}}$ lies in the exterior of C_{i+1} and such that every point of M in the interior of C_{i+1} can be joined to P by an arc of M which lies wholly in the interior of C_i . Let n_i be the smallest integer such that P_{ni} lies in the interior of C_{i+1} and let $P_{ni}P$ denote the arc of M (actually of M-N) whose existence is shown above. For every i, the set $P_{n_i}P + P_{n_{i+1}}P$ contains an arc $P_{n_i}P_{n_{i+1}}$ from P_{n_i} to $P_{n_{i+1}}$. Since every arc $P_{n_i}P_{n_{i+1}}$ lies in the interior of the circle C_i and the numbers r_i approach 0 as *i* increases, the set $P + \sum_{i=1}^{\infty} P_{n_i} P_{n_{i+1}}$ is closed.
- (b). If P is a point of N, let C_1 be a circle with center at P and radius r so small that N and D contain points exterior to C_1 . This is possible unless N is identical with M and in this case our theorem is obvious. Let D_{11} , D_{12} , D_{13} , \cdots be the maximal connected subsets of $D \cdot I(C_1)$.

^{*} That this can be done by an arc, see J. R. Kline, Concerning the approachability of simple closed and open curves, Transactions of this Society, vol. 21 (1920), page 453 and footnote.

[†] If C is a circle, I(C) denotes the interior of C. If A and B are point sets, $A \cdot B$ denotes the set of points common to A and B.

We shall show that one of these sets, which we will denote by D_1 , contains infinitely many of the points P_i . If this is not true, then if C_2 denotes the circle with center at P radius r/2, for infinitely many values of i, D_{1i} has a point within C_2 and C_1 contains a limit point of D_{1i} . Thus infinitely many of the sets D_{1i} are of diameter greater than r/4. But this contradicts the theorem that if $M+C_1$ and $N+C_1$ are continuous curves and $N+C_1$ is a subset of $M+C_1$ then $M+C_1-(N+C_1)$ cannot contain more than a finite number of maximal connected subsets of diameter greater than $r_1/4$.*

Let n_1 be the smallest integer such that D_1 contains P_{n_1} . Similarly one, D_2 , of the maximal connected subsets of $D_1 \cdot I(C_2)$ contains infinitely many of the points P_i . Let n_2 be the smallest integer greater than n_1 such that D_2 contains P_{n_2} . In general let $C_i(j=1,2,3,\cdots)$ be a circle with center at P and radius r/j and let D_j be a maximal connected subset of $D_{j-1} \cdot I(C_j)$ which contains infinitely many points of the sequence $[P_i]$. Let n_j be the smallest integer greater than n_{j-1} such that P_{n_j} lies in D_j . For every j, D_j contains an arc $P_{n_j}P_{n_{j+1}}$. \dagger Since for every j, the arc $P_{n_j}P_{n_{j+1}}$ lies interior to C_j we see easily that the set $P + \sum_{j=1}^{\infty} P_{n_j}P_{n_{j+1}}$ is closed.

B. The condition is sufficient. If N is not a continuous curve there exist‡ two concentric circles K_1 and K_2 and a countable infinity of continua \overline{N} , N_1 , N_2 , N_3 , \cdots , such that (1) each of these continua belongs to N, contains a point on K_1 and a point on K_2 and is a subset of the set H which is composed of K_1+K_2+I , I denoting the annular domain between K_1 and K_2 , (2) no two of these continua have a point in common and, indeed, no one of them except possibly \overline{N} is a proper subset of any connected subset of $N \cdot H$,

^{*} See the abstract of my paper, Concerning the arcs and domains of a continuous curve, this Bulletin, vol. 32 (1926), p. 37.

[†] See R. L. Moore, Concerning continuous curves in the plane, Mathematische Zeitschrift, vol. 15 (1922), pp. 254-260.

[‡] See Report, p. 296.

(3) the set \overline{N} is the sequential limiting set of the sequence of sets N_1 , N_2 , N_3 , \cdots . For each i, let A_i and B_i be points of $K_1 \cdot N_i$ and $K_2 \cdot N_i$ respectively. There exist arcs X_1Y_1A and X_2Y_2B of K_1 and K_2 and an increasing sequence of integers n_1 , n_2 , n_3 , \cdots , such that X_1Y_1A contains A_{n_i} for every i and in the order $X_1Y_1A_{n_1}A_{n_2}\cdots A$ and X_2Y_2B contains B_{n_i} for every i and in the order $X_2Y_2B_{n_1}B_{n_2}\cdots B$.

Let P denote a point of \overline{N} which lies in I. There exists a circle C_1 with center at P such that C_1 , together with its interior, lies in I. Let r_1 be the radius of C_1 . Since M is connected im kleinen at P there exists in any circle C_i a concentric circle \overline{C}_i such that every point of M within \overline{C}_i can be joined to P by an arc of M lying wholly within C_i . Let $N_{11} \equiv N_{n_j}$, where j has the smallest value such that N_{n_j} contains a point Q_1 within \overline{C}_1 . There exists an arc PQ_1 of M lying wholly in C_1 . The arc PQ_1 from P to Q_1 contains a first point E_1 in common with N_{11} and the arc E_1P , a subset of O_1P , has a first point F_1 in common with \overline{N} . The set $\{E_1F_1\}^*$ contains a point P_1 of M-N. Let C_2 be a circle with center at P and radius $r_2 \le r_1/2$ such that P_1 and N_{11} lie in the exterior of C_2 . Let $N_{12} \equiv N_{nj}$, where j has the smallest value such that N_{n_i} contains a point Q_2 within \overline{C}_2 . Let us determine a point P_2 of M-N as above. Continue this process indefinitely each time taking C_i with center at P and radius $r_i \leq r_{i-1}/2$ and such that P_{i-1} and N_{1i-1} lie outside C_i . Thus we obtain an infinite sequence of points P_1 , P_2 , P_3, \cdots , and continua $N_{11}, N_{12}, N_{13}, \cdots$, such that (1) P_i belongs to M-N and lies interior to C_i and thus P is the sequential limit point of the sequence $[P_i]$, (2) $\{E_iF_i\}$ contains P_i , where C_i encloses E_iF_i , and $\{E_iF_i\}$ contains no point of $N_{1i} + \overline{N}$.

Since M-N consists of only a finite number of maximal connected subsets one of these must contain infinitely many of the points $[P_i]$ say \overline{P}_1 , \overline{P}_2 , \overline{P}_3 , \cdots . For each i, let D_i be the maximal connected subset of $M+K_1+K_2-(\overline{N}+\overline{N}_{1i})$

^{*} If AB is an arc from A to B then $\{AB\}$ denotes AB-(A+B).

 $+K_1+K_2$)* which contains \overline{P}_i . We see easily that there exists an integer t_2 such that \overline{P}_1 does not lie in D_{t_2} . Then any arc of M-N from \overline{P}_{t_1} ($t_1=1$) to $\overline{P}_{t_2}\dagger$ must contain a point of either K_1 or K_2 . There exists an integer $t_3>t_2$ such that D_{t_3} does not contain \overline{P}_{t_2} . In general there exists an integer $t_i>t_{i-1}$ such that D_{t_i} does not contain $\overline{P}_{t_{i-1}}$ and thus any arc of M-N from $\overline{P}_{t_{i-1}}$ to \overline{P}_{t_i} must contain a point of K_1 or K_2 . Let $p_i=\overline{P}_{t_i}$. Then if k_1, k_2, \cdots is any increasing sequence of positive integers, the set \overline{N} must contain a limit point of the set $P+\sum_{i=1}^{\infty}p_{k_i}$ $p_{k_{i+1}}$ which lies on K_1 or K_2 and thus the set cannot be closed. But this set is closed by hypothesis. Thus the condition is sufficient.

THEOREM II. In order that a bounded plane continuum M be a continuous curve, it is necessary and sufficient that (1) for any given positive number ϵ there are not more than a finite number of complementary domains of M of diameter greater than ϵ ; (2) if P_1, P_2, P_3, \cdots is any sequence of distinct points of a complementary domain D of M which has a sequential limit point P, then there exists an increasing sequence of positive integers, n_1, n_2, n_3, \cdots , and a sequence of arcs of D, $P_{n_1}P_{n_2}$, $P_{n_2}P_{n_3}$, $P_{n_3}P_{n_4}$, \cdots , such that the set $P + \sum_{i=1}^{\infty} P_{n_i} P_{n_{i+1}}$ is closed.

PROOF. The necessity of condition (1) has been proved by Schoenflies.‡ The necessity of condition (2) can be proved exactly as in Theorem I since no property of the continuous curve M was used that is not also a property of the entire space. The sufficiency of the conditions is proved as in Theorem I except that the fact that some one complementary domain of M contains infinitely many of the points P_1, P_2, P_3, \cdots , which are chosen in the course of the argument, follows from condition (1) rather than the condition M-N consists of a finite number of maximal connected subsets.

^{*} If $\overline{P}_i = P_i$, then \overline{N}_{1i} denotes N_{1i} .

[†] For the proof that such an arc exists, see R. L. Moore, Concerning continuous curves in the plane, loc. cit.

[‡]_See Report, pp. 290, 291.

THEOREM III. If M is a plane continuous curve then M cannot contain, for any positive number ϵ , an infinite number of mutually exclusive continua M_1, M_2, M_3, \cdots , such that (1) the diameter of each set M_i is greater than ϵ , (2) $M-M_i$ is closed except for a set K_i and if η is any positive number there exists an integer n_{η} so that if $i > n_{\eta}$ then K_i can be enclosed in two circles each of radius less than η .

PROOF. Suppose that there exists a positive number ϵ and a continuous curve M such that M contains an infinite number of continua M_1 , M_2 , M_3 , \cdots , which satisfy restrictions (1) and (2) of the theorem. From condition (2) it follows that we may divide each set K_i into two subsets K_{1i} and K_{2i} such that

$$\lim_{i \to \infty} d(K_{1i}) = 0$$
 and $\lim_{i \to \infty} d(K_{2i}) = 0.*$

For each i and j $(i=1, 2, 3, \dots, j=1, 2)$ let A_{ji} be a point of K_{ii} , unless K_{ii} is vacuous. For no value of i can both K_{1i} and K_{2i} be vacuous. Several cases arise here according to the existence or non-existence of the various points A_{ji} but we can see easily that there exist a point A or two points A and B and an increasing sequence of integers n_1 , n_2 , n_3, \cdots , such that either (1) K_{1n_i} is vacuous for each i, and A is the sequential limit point of $[A_{2n_i}]$, (2) K_{2n_i} is vacuous for each i and A is the sequential limit point of $[A_{1n_i}]$, (3) all of the points of the sequences $[A_{1n_i}]$ and $[A_{2ni}]$ exist and A is the sequential limit point of each sequence, or (4) all of the points of the sequences $[A_{1n_i}]$ and $[A_{2n_i}]$ exist and A and B are the sequential limit points of the sequences $[A_{1ni}]$ and $[A_{2ni}]$ respectively $(A \neq B)$. For cases (1), (2) and (3), let $t = \epsilon$; for case (4) let t = d(A, B). By condition (2) of the hypothesis of the theorem, there exists an integer k_1 so that if $i > k_1$ then

$$d(K_{1ni}) < t/12$$
 and $d(K_{2ni}) < t/12$.

^{*} If K is a set of points the notation d(K) denotes the diameter of K. If A and B are two points the notation d(A, B) denotes the distance from A to B.

Also there exists an integer k_2 so that if $i > k_2$ then either Case (1) $d(A_{2ni}, A) < t/12$, or Case (2) $d(A_{1ni}, A) < t/12$, or Case (3) $d(A_{1ni}, A) < t/12$ and $d(A_{2ni}, A) < t/12$, or

Case (4) $d(A_{1ni}, A) < t/12$ and $d(A_{2ni}, B) < t/12$.

In any case if $k_3 = k_1 + k_2$ and $i > k_3$ then the circle C_1 with center at A and radius t/6, or the circles C_1 and C_2 with centers at A and B and radii t/6, enclose every point of K_{ni} . For every $i > k_3$, M_{ni} contains a point p_i such that $d(A, p_i) > t/3$ and $d(B, p_i) > t/3$ (if B exists). The sequence M_{n_1} , M_{n_2} , M_{n_3} , \cdots , contains a subsequence \overline{M}_1 , \overline{M}_2 , \overline{M}_3 , \cdots , such that (1) for every i, if $\overline{M}_i = M_{nj}$ then $j > k_3$, (2) for every i, if $\overline{M}_i = M_{nj}$ and $\overline{M}_{i+1} = M_{nm}$ then j < m, (3) the points \bar{p}_1 , \bar{p}_2 , \bar{p}_3 , \cdots * have a sequential limit point P. It follows that M contains P, that $d(P, A) \ge t/3$ and $d(P, B) \ge t/3$ (if B exists) and that if C_3 is a circle of radius t/6 with P as a center then no point of any set \overline{K}_i is within C_3 . As M is connected im kleinen at P the circle C_3 encloses a concentric circle C_4 such that every point of M within C_4 can be joined to P by an arc of M which lies entirely in C_3 . Let p_s be the first point of the sequence $|\bar{p}_i|$ within the circle C_4 . There exists an arc α from \bar{p}_s to P which lies wholly in C_3 . Let $\alpha_1 = \overline{M}_s \cdot \alpha$ and $\alpha_2 = \alpha - \alpha_1$. As α is connected one of these sets must contain a limit point of the other. The set \overline{M} , and consequently α_1 , is closed. Then α_1 must contain a limit point q of α_2 . As \overline{M}_s contains α_1 and $M-\overline{M}_s$ contains α_2 , by definition q must belong to \overline{K}_s . But no point of \overline{K}_s is within C_3 while α is entirely within C_3 . Thus the supposition that M contains an infinite set of this type has led to a contradiction.

The preceding theorem implies as an immediate corollary the following rather useful result.

^{*} If $\overline{M}_i = M_{nj}$, then \overline{P}_i denotes p_{nj} .

Theorem IV.* If M is a plane continuous curve then M cannot contain, for any positive number ϵ , an infinite number of arcs of diameter greater than ϵ which are mutually exclusive except possibly for common end-points and such that if α is any one of this set of arcs then $M - \{\alpha\}$ is closed.

That Theorem I no longer remains true when the condition that "M-N consists of a finite number of maximal connected subsets" is removed, even with the addition of the condition that "for any positive number ϵ , M-N contains only a finite number of maximal connected subsets of diameter greater than ϵ ," is shown by the following example. The modified conditions are necessary but not sufficient.

Let N denote the set of points consisting of the intervals from (1,0) to (0,0) and from (0,1) to (0,0) together with the intervals from (1,1/i) to (0,1/i) for every positive integer i. Let M be the set of points consisting of N together with the intervals from (j/i,1/i) to (j/i,0) for every positive integer j < i and for every positive integer i. The modified conditions are then satisfied, but N is not a continuous curve.

Theorem III gives a necessary condition that a bounded continuum be a continuous curve. The following example shows that this condition is not sufficient: Let M be an indecomposable continuum of diameter $\geq 2\epsilon$ and let $\eta < \epsilon/10$. Now suppose that M_1, M_2, M_3, \cdots is any sequence of mutually exclusive subcontinua of M of diameter greater than ϵ . As each set M_i is a proper subcontinuum of an indecomposable continuum it is a continuum of condensation of M. Thus for each $i, K_i \equiv M_i$. Then no matter how large i is, K_i cannot be enclosed in two circles each of radius less than η . Thus M satisfies the condition but is not a continuous curve.

THE UNIVERSITY OF PENNSYLVANIA

^{*} This theorem was presented to the Society October 31, 1925. I am indebted to Dr. H. M. Gehman for the suggestion that this theorem might be generalized. The resulting study led to Theorem III of this paper.

[†] This example is due to Professor J. R. Kline.

[‡] Cf. Z. Janiszewski and C. Kuratowski, Sur les continus indécomposables, Fundamenta Mathematicae, vol. 1 (1920), pp. 210-222.