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A THEOREM ON CONNECT ED POINT SETS WHICH
ARE CONNECTED IM KLEINEN*

BY R. L. WILDER

It has been shown by Miss Mullikin { that if K and M are
two closed,I mutually exclusive point sets and H is a closed,
bounded, connected set having at least one point in common
with each of the sets K and M, then there exists a point set
L, a subset of H, such that L is connected and contains no
point of either K or M, but such that K and M each contain
at least one limit point of L.

If H is not closed, the above theorem no longer holds, as
can be shown by very simple examples. It is the purpose of
this note to establish an analogous theorem for the case
where H, although not closed, is connected im kleinen.§

THEOREM. Let K and M be two closed mutually exclusive
point sets and N a connected, connected im kleinen point set

* Presented to the Society, October 31, 1925.

1 Certain theorems relating to plane connected point sets, TRANSACTIONS
OF THIS SOCIETY, vol. 24 (1922), pp. 144-162. Rosenthal gave a proof for
that case where each of the sets K and M reduces to a single point. See
A. Rosenthal, Teilung der Ebene durch irreduzible Kontinua, MUNCHENER
SITZUNGSBERICHTE, MATHEMATISCH-PHYSIKALISCHE KLASSE, 1919, p. 104.

1 A point set is said to be (1) closed, if it contains all its limit points;
(2) connected, if it is not the sum of two mutually exclusive points sets
neither of which contains a limit point of the other; (3) bounded, if it lies
entirely in a finite portion of the space under consideration.

§ A point set M is said to be connected im kleinen at a point P if for
every circle K with center at P there exists a concentric circle K, such that
every point x of M which lies interior to K is joined to P by a connected
subset of M which lies wholly within K;. M is itself said to be connected im
kleinen if it is connected im kleinen at every point. See Hans Hahn,
Mengentheoretische Charakterisierung der stetigen Kurve, WIENER SITZUNGS-
BERICHTE, vol. 123, Abt. ITa (1914), pp. 2433-2489; also Uber die all-
gemeinste ebene Punkimenge, die stetiges Bild einer Strecke ist, JAHRES-
BERICHT DER VEREINIGUNG, vol. 23 (1914), pp. 318-322. See also S. Mazur-
kiewicz, Sur les lignes de Jordan, FUNDAMENTA MATHEMATICAE, vol. 1
(1920), pp. 166-209, and earlier papers in Polish referred to therein.
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which has at least one point in common with each of the sets K
and M. Then there exists a point set H, a subset of N, such
that H is connected and contains no point of either K or M,
but such that K and M each contain at least one point of N
which is a limit point of H.

Proor. Let
NXK=E,
NXM=m.

For every point P of N — (k+m), consider the composant*
C(P) determined by P in that set.

No C(P)=P. For there exists a circle, C, with center at P,
which encloses no point of the closed set K+ M. As N is
connected and connected im kleinen, there exists at least
one point x of NV, distinct from P, which lies, with P, in a
connected subset of N which lies wholly interior to C and
can, therefore, contain no point of k+m. Hence x is a point
of C(P) distinct from P.

Every C(P) has a limit point in & or m. For suppose not.
Then let x be a point such that C(x) has no limit point in
k+m. Then

N=C(x)+N',

where N’ consists of all points of NV not contained in C(x).
Either C(x) contains a limit point of N’ or vice versa.
Let y be a limit point of N' in C(x). As K+ M is closed,
there exists a circle C with center at ¥ and enclosing no point
of K+M. As N is connected im kleinen there exists a
point z of N’ interior to C which lies with vy in a connected
subset of N which lies wholly interior to C and hence con-
tains no point of k+m. Then 2 is a point of C(x). This is
impossible. Hence C(x) cannot contain any limit point of N’.
Similarly N’ cannot contain any limit point of C(x). Hence
N is the sum of two mutually exclusive sets neither of which
contains a limit point of the other. But this is impossible

* L.e., the set of all points which lie with P in a connected subset of
N—(k+m).
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since IV is connected. Thus the supposition that a C(P) exists
which has no limit point in % or m leads to a contradiction.
If any C(P) has limit points in both & and m the theorem
is proved. Suppose this is not the case.
Separate N into two sets, N1 and N3, such that

N1=k+Q1 and N2=m—|—Q2

where Q; contains all points x of N — (k+m) such that C(x)
has a limit point in %k, and Qs contains all points x of N—
(k+m) such that C(x) has a limit point in m.

As N is connected, N; contains a limit point of N, or
vice versa. Suppose N, contains a limit point, ¢, of Ni.

The point ¢ cannot belong to (3, since in this case it could
be shown that ¢ is joined to some point of Q; by a connected
subset of N—(k+m), by virtue of the connectedness im
kleinen of N. Hence ¢ must be a point of m.

Let T be a circle with center at ¢ and enclosing no point
of K. There exists, because of the connectedness im kleinen
of N, a connected subset, R, of IV, which contains some point
s of Q1 and ¢, and lies wholly interior to 7". Let

[C(s)+R]—C(s)=R".

The set C(s)+ R’ is connected. Now C(s) has no limit point
in R’ since such a point would belong to the set N — (k+m)
and hence also to the set C(s). On the other hand, if R’
has a limit point, %, in C(s), it can be readily shown by
application of the connectedness im kleinen of IV at u that
at least one point of R’ belongs to C(s), which is of course
impossible. Then C(s)4+R’ is the sum of two mutually ex-
clusive sets neither of which contains a limit point of the
other, which contradicts the fact that C(s) + R’ is connected.

Thus the supposition that no C(P) has a limit point in
both k2 and m leads to a contradiction and the theorem is
proved.
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