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A T H E O R E M ON C O N N E C T E D POINT SETS WHICH 
ARE CONNECTED I M KLEINEN* 

BY R. L. WILDER 

It has been shown by Miss Mullikinf that if K and M are 
two closed,% mutually exclusive point sets and H is a closed, 
bounded, connected set having at least one point in common 
with each of the sets K and M, then there exists a point set 
L, a subset of H, such that L is connected and contains no 
point of either K or M, but such that K and M each contain 
at least one limit point of L. 

If H is not closed, the above theorem no longer holds, as 
can be shown by very simple examples. I t is the purpose of 
this note to establish an analogous theorem for the case 
where H, although not closed, is connected im kleinen.§ 

THEOREM. Let K and M be two closed mutually exclusive 
point sets and N a connected, connected im kleinen point set 

* Presented to the Society, October 31, 1925. 
f Certain theorems relating to plane connected point sets, TRANSACTIONS 

OF THIS SOCIETY, vol. 24 (1922), pp. 144-162. Rosenthal gave a proof for 
that case where each of the sets K and M reduces to a single point. See 
A. Rosenthal, Teilung der Ebene durch irreduzible Kontinua, MÜNCHENER 
SITZUNGSBERICHTE, MATHEMATISCH-PHYSIKALISCHE KLASSE, 1919, p. 104. 

t A point set is said to be (1) closed, if it contains all its limit points; 
(2) connected, if it is not the sum of two mutually exclusive points sets 
neither of which contains a limit point of the other; (3) bounded, if it lies 
entirely in a finite portion of the space under consideration. 

§ A point set M is said to be connected im kleinen at a point P if for 
every circle K\ with center at P there exists a concentric circle K% such that 
every point x of M which lies interior to K.% is joined to P by a connected 
subset of M which lies wholly within K\. M is itself said to be connected im 
kleinen if it is connected im kleinen at every point. See Hans Hahn, 
Mengentheoretische Charakterisierung der stetigen Kurve, W I E N E R SITZUNGS­
BERICHTE, vol. 123, Abt. Ha (1914), pp. 2433-2489; also Vber die all-
gemeinste ebene Punktmenge, die stetiges Bild einer Strecke ist, JAHRES-
BERICHT DER VEREINIGUNG, vol. 23 (1914), pp. 318-322. See also S. Mazur-
kiewicz, Sur les lignes de Jordan, FUNDAMENTA MATHEMATICAE, vol. 1 
(1920), pp. 166-209, and earlier papers in Polish referred to therein. 
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which has at least one point in common with each of the sets K 
and M. Then there exists a point set H, a subset of N, such 
that H is connected and contains no point of either K or M, 
but such that K and M each contain at least one point of N 
which is a limit point of H. 

PROOF. Let 

NXM = m. 

For every point P of N — (k + m), consider the composant* 
C(P) determined by P in that set. 

No C(P) = P . For there exists a circle, C, with center at P , 
which encloses no point of the closed set K+M. As N is 
connected and connected im kleinen, there exists at least 
one point x of N, distinct from P , which lies, with P , in a 
connected subset of N which lies wholly interior to C and 
can, therefore, contain no point of k-\-m. Hence x is a point 
of C(P) distinct from P . 

Every C(P) has a limit point in k or m. For suppose not. 
Then let x be a point such that C(x) has no limit point in 
k-\-m. Then 

N=C(x)+N\ 

where Nf consists of all points of N not contained in C(x). 
Either C(x) contains a limit point of N' or vice versa. 

Let y be a limit point of N' in C(x). As K + M is closed, 
there exists a circle C with center at y and enclosing no point 
of K + M. As N is connected im kleinen there exists a 
point z of Nf interior to C which lies with y in a connected 
subset of N which lies wholly interior to C and hence con­
tains no point of k+m. Then z is a point of C(x). This is 
impossible. Hence C(x) cannot contain any limit point of N'. 
Similarly Nf cannot contain any limit point of C(x). Hence 
N is the sum of two mutually exclusive sets neither of which 
contains a limit point of the other. But this is impossible 

* I.e., the set of all points which lie with P in a connected subset of 
N~(k+m). 
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since N is connected. Thus the supposition that a C(P) exists 
which has no limit point in k or m leads to a contradiction. 

If any C(P) has limit points in both k and m the theorem 
is proved. Suppose this is not the case. 

Separate N into two sets, Ni and N2, such that 

Nx = k + Qi and N2 = m+Q2 

where Qi contains all points x of N—(k+m) such that C(x) 
has a limit point in &, and Q2 contains all points x of N — 
(k + m) such that C(x) has a limit point in m. 

As iV is connected, N± contains a limit point of N2, or 
vice versa. Suppose N2 contains a limit point, t, of Ni. 

The point / cannot belong to Q2, since in this case it could 
be shown that / is joined to some point of <2i by a connected 
subset of N—{k-\-m)y by virtue of the connectedness im 
kleinen of N. Hence / must be a point of m. 

Let T be a circle with center at / and enclosing no point 
of K. There exists, because of the connectedness im kleinen 
of N, a connected subset, R, of N, which contains some point 
5 of Q\ and /, and lies wholly interior to T. Let 

[C(s)+R]-C(s)=R'. 

The set C(s)+R' is connected. Now C(s) has no limit point 
in Rf since such a point would belong to the set N—{k+m) 
and hence also to the set C(s). On the other hand, if Rf 

has a limit point, w, in C(s), it can be readily shown by 
application of the connectedness im kleinen of N at u that 
at least one point of R' belongs to C(s), which is of course 
impossible. Then C(s)+Rf is the sum of two mutually ex­
clusive sets neither of which contains a limit point of the 
other, which contradicts the fact that C(s)+Rf is connected. 

Thus the supposition that no C(P) has a limit point in 
both k and m leads to a contradiction and the theorem is 
proved. 
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