NOTE ON A PROBLEM IN APPROXIMATION WITH AUXILIARY CONDITIONS*

BY DUNHAM JACKSON

Let $\rho(x)$ and f(x) be two given functions of period 2π , the former bounded and measurable, with a positive lower bound, the latter, for simplicity, continuous. Among all trigonometric sums $T_n(x)$, of given order n, there is one and just one for which the value of the integral

(1)
$$\int_{0}^{2\pi} \rho(x) [f(x) - T_{n}(x)]^{2} dx$$

is a minimum. If the weight function $\rho(x)$ is identically 1; it is a matter of familiar knowledge that the minimum is reached when $T_n(x)$ is the partial sum of the Fourier series for f(x). A considerable amount of attention has been given recently to the problem of the convergence of the minimizing sum $T_n(x)$ toward f(x), as n becomes infinite, under the generalized conditions that result from the admission of an arbitrary weight function. \dagger

Let x_1, \dots, x_N be N values of x in the interval $0 \le x < 2\pi$. The problems of the preceding paragraph may be further varied by admitting to consideration only such sums $T_n(x)$ as satisfy the conditions

(2)
$$T_n(x_i) = f(x_i), \qquad (i = 1, 2, \dots, N),$$

and inquiring after the minimum of the integral (1) subject to these auxiliary conditions. It is understood that the given value of n is large enough so that the conditions (2) can be

^{*}Presented to the Society, April 3, 1926.

[†] Cf. e.g., D. Jackson, Note on the convergence of weighted trigonometric series, this Bulletin, vol. 29 (1923), pp. 259-263, where further bibliographical references will be found; also D. Jackson, A generalized problem in weighted approximation, Transactions of this Society, vol. 26 (1924), pp. 133-154.

fulfilled; for this it is sufficient that $n \ge \frac{1}{2}(N-1)$. There is no essential novelty in the proof of the existence and uniqueness of the sum which yields the minimum. The notation $T_n(x)$ being restricted henceforth to this "approximating sum," it is the purpose of the following lines to discuss the convergence of $T_n(x)$ toward f(x), as n increases without limit. The question is not trivial, even if $\rho(x) \equiv 1$. It is quite distinct from the conventional problems of interpolation, inasmuch as N is fixed, and does not increase with n.

For each value of $n(\geq \frac{1}{2}(N-1))$, let a continuous function $\varphi_n(x)$ be defined, having ϵ_n as an upper bound for its absolute value, and such that

(3)
$$\varphi_n(x_i) = 0$$
, $(i = 1, 2, \dots, N)$.

Let $\tau_n(x)$ be the approximating sum of the *n*th order for $\varphi_n(x)$; that is, the sum which minimizes the integral

$$\int_0^{2\pi} \rho(x) \left[\varphi_n(x) - \tau_n(x) \right]^2 dx ,$$

subject to the conditions

(4)
$$\tau_n(x_i) = 0$$
, $(i = 1, 2, \dots, N)$.

Exactly as in the absence of the restrictions (3), (4), it may be shown* that

$$\left|\varphi_n(x)-\tau_n(x)\right| \leq k\epsilon_n\sqrt{n}$$
,

where k is independent of n (expressible, in fact, in terms of the ratio of the upper and lower bounds of $\rho(x)$, and independent of anything else). The new conditions call for notice only to the extent of the observation that a trigonometric sum which vanishes identically comes within the requirements of (4). Furthermore, it is recognized at once that if $\varphi_n(x)$ is defined by the relation

$$\varphi_n(x) = f(x) - t_n(x) ,$$

where $t_n(x)$ is a trigonometric sum of the *n*th order taking on the same values as f(x) at the points x_1, x_2, \dots, x_N , then $\tau_n(x)$ and $T_n(x)$ are related by the identity \dagger

^{*} D. Jackson, this BULLETIN, loc. cit.

[†] Cf. this BULLETIN, loc. cit., p. 261.

$$\tau_n(x) = T_n(x) - t_n(x) ,$$

so that $f(x) - T_n(x) = \varphi_n(x) - \tau_n(x)$ indentically, and

$$|f(x)-T_n(x)| \leq k\epsilon_n \sqrt{n}$$
.

The formulation of sufficient conditions for convergence is reduced then to the determination of the order of magnitude of ϵ_n , the measure of the accuracy with which f(x) can be uniformly approached by trigonometric sums $t_n(x)$ such that

(5)
$$t_n(x_i) = f(x_i)$$
, $(i = 1, 2, \dots, N)$.

Let $y_1, y_2 \cdots , y_N$ be any N numbers subject to the conditions $|y_i| \leq 1$, $i=1, 2, \cdots, N$. If N is even, let x_0 be a point in $(0, 2\pi)$ distinct from x_1, x_2, \cdots, x_N , and let $y_0=1$. Let t(x) be the trigonometric sum of order $\frac{1}{2}(N-1)$ or $\frac{1}{2}N$, according as N is odd or even, which takes on the values $[y_0], y_1, \cdots, y_N$ at the points $[x_0], x_1, \cdots, x_N$. Let g be the maximum of |t(x)|. This g is a continuous function* of y_1, y_2, \cdots, y_N , and has a maximum G, as the y's range over all admissible values. If 1 is replaced by η as upper bound for the absolute values of the y's, the greatest possible absolute value of the corresponding t(x) is $G\eta$.

Now suppose it is known that for each $n \ge \frac{1}{2}N$ there is a trigonometric sum $\bar{t}_n(x)$, of the *n*th order, satisfying everywhere the relation

$$\left|f(x)-\bar{t}_n(x)\right| \leq \eta_n$$
,

but not further specially restricted at the points x_1, \dots, x_N . Let

$$y_i = f(x_i) - \bar{t}_n(x_i)$$
, $(i = 1, 2, \dots, N)$,

and let t(x) be determined as above, for this set of y's. Then $|t(x)| \le G\eta_n$, where G is independent of n (being dependent only on x_1, \dots, x_N). The determination of

^{*} Explicitly, as is well known,

 $t(x) = \sum_{i=1}^{N} y_i \frac{\sin \frac{1}{2}(x-x_1) \cdot \cdot \cdot \sin \frac{1}{2}(x-x_{i-1}) \sin \frac{1}{2}(x-x_{i+1}) \cdot \cdot \cdot \sin \frac{1}{2}(x-x_N)}{\sin \frac{1}{2}(x_{i-x_1}) \cdot \cdot \cdot \sin \frac{1}{2}(x_{i-x_{i-1}}) \sin \frac{1}{2}(x_{i-x_{i+1}}) \cdot \cdot \cdot \sin \frac{1}{2}(x_{i-x_N})}$ when N is odd, the initial index 1 being replaced by 0 when N is even.

t(x) is different for different values of n, but each t(x) is itself a trigonometric sum of order $\frac{1}{2}N$ at most. The identity

$$t_n(x) = \bar{t}_n(x) + t(x)$$

defines a sum of the nth order such that the conditions (5) are fulfilled, and such that

$$|f(x)-t_n(x)| \leq (1+G)\eta_n$$
.

As the factor 1+G is independent of n, this means that the order of the attainable approximation is not affected by the imposition of the restrictions (5).

In particular, if $\omega(\delta)$ is the maximum of |f(x')-f(x'')| for $|x'-x''| \leq \delta$, and if $\lim_{\delta \to 0} \omega(\delta)/\sqrt{\delta} = 0$, sums $\bar{t}_n(x)$ will exist* such that $\lim_{n \to \infty} \eta_n \sqrt{n} = 0$, and there will consequently be sums $t_n(x)$ such that $\lim_{n \to \infty} \epsilon_n \sqrt{n} = 0$. We may state the result as a theorem, identical in form with the one found when the auxiliary conditions (2) are omitted.

THEOREM. The sum $T_n(x)$ will converge uniformly to the value f(x) for $n \to \infty$, provided that

$$\lim_{\delta \to 0} \omega(\delta) / \sqrt{\delta} = 0.$$

It is readily seen that essentially the same treatment can be carried through if $[f(x)-T_n(x)]^2$ in (1) is replaced by $|f(x)-T_n(x)|^m$, for any value of m>1; the condition for convergence is that $\lim_{\delta\to 0} \omega(\delta)/\delta^{1/m}=0$. The discussion can be further extended in various ways that need not be elaborated here.

THE UNIVERSITY OF MINNESOTA

^{*} Cf. this Bulletin, loc. cit., p. 261.