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PROPERTIES OF UNRESTRICTED 
REAL FUNCTIONS* 

BY HENRY BLUMBERG 

The functions that ordinarily interest mathematicians are 
of specialized character—continuous, differentiate, analytic, 
of limited variation, etc. Historically, of course, the race 
starts with simple, concrete things and only gradually moves 
on to abstract conceptions. In the case of functions, it was 
not till the nineteenth century that serious attention was 
accorded functions affected with a generous degree of dis­
continuity, and it was not till the middle of the century 
that there emerged Dirichlet's conception of an unrestricted 
(real) function. According to this conception, g(x) is a real 
function of the real variable x if to every real number x there 
corresponds a real number g(x). This conception, natural 
and simple though it is, conflicted with the traditional notion 
—which, indeed, is the same as the one widely held by those 
unconversant with modern developments of the theory of 
functions of a real variable—that required from every 
function some sort of analytic expressibility. Thus, g(x) is 
a function, according to Dirichlet, if g(0)=0 and g(x) = 1 
for X5*0. It so happens that this particular g(x) is analytically 
expressible as 

Km (x**1)2 

n—>oo 

for example, where n is a positive integer. But the decision 
that g{x) is a function rests, for Dirichlet, solely on the 
ground of the correspondence of a real number g(x) to every 
real number x ; whereas, according to the older conception, 

* Address delivered at the meeting of the Southwestern Section of the 
Society, held at Columbia, Mo., December 1, 1923. 
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it was necessary to demonstrate the expressibility of g(x) 
by means of sums, products, sines, logarithms, limits, etc., 
before admitting it into the domain of functions. 

The functions we shall deal with are single-valued—other­
wise they are unrestricted. The assumption of one-valuedness 
may be regarded as entering the definition of function, if we 
require that to every x there shall correspond just one number 
g(x) ; besides, the properties we shall be concerned with hold 
essentially even when this assumption is dropped. 

Now suppose one were to select a particular function g{x) 
out of the class of unrestricted one-valued, real functions. 
If we are told nothing concerning his choice, what can we say 
about g{x) ? Anything but trivialities? Compare the question 
with the following one : Suppose one were to select a real 
number without telling us anything concerning it. What can 
we say about it? In this case, I know of nothing insufficiently 
evident to be worth while asserting. 

Not so, however, with the question concerning the function 
g{x). In other words, we are able to state properties—by no 
means trivial—that hold for all real functions. This may 
seem unexpected. Even Hobson, in his latest edition of 
The Theory of Functions of a Real Variable (1921) writes: 
"No elaborate theory is required for functions which retain 
their complete generality, . . . since few deductions of im­
portance can be made from that definition which will be valid 
for all functions." 

A property of all real functions g{x) can, of course, be a 
consequence of nothing else than that g(x) is a real function. 
What may, however, not be seen at once is that the condition 
that g(x) is a real function has implications that are far from 
obvious and yet of a simplicity that attracts interest. There 
is thus added to our conception of an unconditioned function 
a richness of detail that one would at first hardly suspect. 

It so happens that the subject matter of this paper lies 
near the foundations of mathematical analysis, so that only 
a slight knowledge of mathematics is necessary for under­
standing the content of the theorems—if not of the proofs, 
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which we mostly omit anyway. To make the paper intelligible 
to a wider circle of readers, we shall assume no further technical 
knowledge on the part of the reader than that possessed by 
one who knows the calculus. 

We first explain the notions least upper bound, greatest 
lower bound, and saltus. The least upper bound of a real, one-
valued function g(x) in an interval (a, b) is, as the very name 
signifies, the smallest number not exceeded by the functional 
values of g(x) in (a, b) ; we denote it by u(g, a, b). Thus sup­
pose g(x), defined for O ^ x ^ l , is 0 for x = 0 and also for ir­
rational values of x; and g(x)=x— 1/q if x = p/q, a rational 
fraction in its lowest terms. Then u(g, 0, 1) = 1, because 1 
is the smallest number not exceeded by the values of g(x). 
Similarly, the greatest lower bound of g(x) in an interval 
(a, ô), denoted by l(g, a, b) is the largest number exceeding 
no value of g(x) for aSx^b. The saltus of g(x) in (a, b), 
denoted by s(g, a, b), is the span of variation of the functional 
values of g(x) in the interval, and is defined by the equation 

s(g, a, &) = (̂g> a, b)-Kg, a, V) • 

We have defined the saltus in an interval (a, b) ; we now 
define the saltus at a point x—the passage from the former 
to the latter being made like that from average speed in an 
interval of time to instantaneous speed. We enclose the 
point x in intervals (a, (3) of length Za/3 approaching 0, and de­
fine the saltus of g(x) at x, which we denote by s(g, x), as 

lim s(g9 a, 0) , 
l -+0 

where (a, /3) is understood to be an interval containing x 
as interior point. I t may be seen after slight reflection that 
this limit always exists. In the case of the particular function 
g(x) defined above, s(g,x)=x, O ^ x ^ l . 

With every function g(x)—no matter how discontinuous it 
may be—we can thus associate a species of "derived" function, 
namely, the saltus function s(g, x). The successive saltus 
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functions derived from a given primitive g(x) we denote by 

s'(g, %) = s(g, x), s"(g, x)=s(s', x)9 s'"(g, x) = s(s", x)} 

and so on. 
We are now ready to tell something about the selected 

function g(x) without inquiring as to its special character; 
namely, that s'"(g, x)^s"(g, x).* In other words, in the suc­
cession of saltus functions s'(g, x), s"(g, x), s'"(g> #), • • • 
all from the second on are equal. Here is a concrete example. 
Let g(x), defined in the interval (0, 1), be equal to x for ir­
rational x; g(x)=0 for x = 0, x=l, and for rational fractions 
in which the denominator is an integral power of 2 ; g(x) = 
x+l/q for every rational fraction x = p/q, supposed to be 
in its lowest terms, with q not an integral power of 2. It may 
be seen that l(g, x ) = 0 for every x, and that u(g,x)=x 
everywhere except that u(g,p/q) = (p+l)/q for fractions p/q 
of the described type. Hence s'(g, p/q) = (p+l)/q, and 
s'(g, x)=x for every x not of the form p/q. Therefore l(s', x), 
i. e., the lower bound function of the first saltus function, 
equals x at every point, and u(s', x) =x except that u(s'yp/q) = 
p + l/q, so that s"(g, p/q) = l/q, and s"(g, x ) = 0 for x^p/q. 
Hence s'"(g, p/q) = l/q and 5r//(g, x)=0 for Xy^p/q, so that 

To be able to tell more about unconditioned functions, we 
shall define other types of saltus. These new types are ob­
tained by agreeing to regard certain point sets as negligible 
The first new type thus obtained, called the f-saltus, comes b> 
considering finite sets as negligible. The /-saltus of g(x) in 
the interval (a, ft), denoted by sf(g, a, &), is defined as the 
number k satisfying the following two conditions : (a) by 
neglecting the values of g(x) in a suitably chosen finite set 
of points, we can make the resulting ordinary saltus s(g, a, b) 
less than k plus as small a number as we please ; (b) no matter 
what finite set we choose to neglect, we cannot make the 
resulting ordinary saltus less than k. Thus suppose g(x), 

* Sierpióski, BULLETIN DE L'ACADÉMIE DES SCIENCES DE CRACOVIE 

(1910), pp. 633-634. 
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defined in the interval (0, 1), equals 0 everywhere except at 
the points # = l / 2 n , w = l, 2, • • • , where g(x)=x. The 
ordinary saltus in the interval is 1/2. But if we exclude the 
point # = 1 / 2 , the resulting saltus is 1/4; if we exclude the 
points 1/2 and 1/4, the resulting saltus is 1/8 ; and so on. 
Hence sf(g, 0, 1 )=0, while s(g, 0, 1) = 1/2. 

As in the case of the ordinary saltus, we pass from the 
idea of the /-saltus in an interval to that of the /-saltus at 
a point x by means of a sequence of intervals enclosing x and 
having 0 as limiting length. With every function g(x), there 
thus coexists, apart from s(g, x)} this new/-saltus function, 
which we denote by s/(g, x). 

We obtain another type of saltus, the d-saltus, by agreeing 
that denumerable sets may be neglected ; i. e., infinite sets 
containing as many individuals as there are positive integers ; 
or in other words, sets whose elements may be completely 
mated in one-to-one manner with all the positive integers. 
For example, the set of rational numbers between 0 and 1 
is denumerable ; for we can arrange all the rational numbers 
in the intervals (0, 1) as follows : 

0, 1, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, • • -, 
and then mate them successively with the positive integers, 
the 0 with the 1, the 1 with 2, the 1/2 with the 3, and 
so on, every rational number between 0 and 1 being thus 
mated to just one positive integer, and every positive integer 
to just one rational number. Let g(x)=x for x rational, and 
g(x) = 0 for x irrational. Then s(g, 0, 1) = 1 and s/(g, 0, 1) = 1. 
But Sd(g, 0, 1 )=0, i. e., the d-saltus of g(x) in the interval 
(0, 1) is 0, since we may neglect the functional values at the 
denumerable set of points where x is rational. 

Another type of saltus one naturally thinks of is obtained 
by regarding sets of zero measure (Lebesgue) as negligible. 
A set is said to be of zero measure if it can be enclosed in 
a denumerable infinity of intervals in such a way that the 
sum of the lengths is arbitrarily small. For example, suppose 
that a point set S on a straight line is denumerable, so that 
the totality of points in 5 may be mated in one-to-one manner 
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with the positive integers. In this one-to-one correspondence, 
let Pn denote the element of 5 that is mated with the positive 
integer n. Enclose Pn (n = 1, 2, • • • ) in an interval of length 
ô/2w, where S is a positive number. The totality of points 
of S, i. e., the points of the sequence Ph P2 , • • • , may there­
fore be covered by intervals the sum of whose lengths is 

Ô Ô 
~ + - + . . . =5 . 
2 22 

Since 5 can be made arbitrarily small, the "length" of the 
set S is zero ; that is to say, 5 is of zero measure (Lebesgue) 
according to our definition. 

We may remark that the reasoning above shows that it is 
impossible to mate all the points of the continuum, or for 
that matter, all the points in an interval (a, b), with the 
positive integers in one-to-one manner. For if the points 
in (a, b) were denumerable, we could cover them completely 
by means of intervals whose sum of lengths is arbitrarily 
small. This would involve contradiction in our notions of 
length. We have here, then, a proof of the theorem of Cantor 
that it is impossible to arrange all the points of the con­
tinuum in an ordered sequence like that of the positive in­
tegers. 

If we may neglect sets of zero measure, we are led to the 
2-saltus. The set of rational points between 0 and 1, consti­
tuting, as we have seen, a denumerable set, is of measure 
zero. Suppose g(x) = 0 for irrational points and 1 for rational 
points of the interval (0, l ) . Then s(g, 0, l) = sf(g, 0, l) = 1 
and sd(g, 0, l)=sz(g, 0, 1 ) = 0 ; here s9(g, 0, 1) denotes the 
2-saltus of g(x) in the interval (0, 1). While every denumer­
able set is of zero measure, the variety of sets of zero measure 
is so great that the denumerable sets may be said to con­
stitute but a vanishing portion of the totality of sets of zero 
measure. Suppose Z is a non-denumerable set of points of 
zero measure lying in the interval (a, 6); let g(x)=0 if x 
belongs to Z, and g(x) = l, if x belongs to the interval (a, b) 
but not to Z. Then sd(g, a, b) = 1 while sz(g> a, b) =0 . 
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Besides the ordinary saltus function, we thus have the ƒ-
saltus function, the d-saltus function and the s-saltus function, 
and for each of these new types we have a property of un­
conditioned functions similar to the one for the ordinary 
saltus. In the case of the d-saltus and the 0-saltus, we have 

s'd" (g, x)=s/(g, x) , 
and 

s"' (g, tf) = ssIV(g, x) ;* 

while examples of functions g(x) may be constructed for which 
s*" (&, %)jéSd" (g> x) and s" (g, x)^sj" (g, x). The corre­
sponding result for the/-saltus is more complicated; we omit 
its statement here.* 

I t may be remarked that g(x) may be many-valued without 
significantly disturbing the general properties already men­
tioned ; likewise, infinite values of g(x) may be admitted with­
out invalidating the results, provided familiar agreements are 
made in regard to the calculation with oo. The results hold 
also for functions of n variables and for much more general 
spaces. 

With the aid of the above defined saltus functions, we are 
thus able to tell various things—by no means obvious—about 
unconditioned functions. But, one may say, the properties 
describe the function g{x) only indirectly ; directly they 
describe the character of the associated saltus functions, 
which turn out to be of special character. Have we any non-
trivial qualifications of unrestricted functions that describe 
them directly? Yes. But to state them we shall need certain 
additional notions. 

It will be more convenient now to deal with real, single-
valued functions g(x) of two real variables, instead of one, 
but, as before, unconditioned as to continuity. And cor­
respondingly the point sets we shall speak of will be planar. 

* Blumberg, ANNALS OF MATHEMATICS, (2), vol. 18 (1917), p. 147. 
+ Blumberg, loc. cit. 
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A (planar) point set N is said to be nowhere-dense, if in 
every circle of the plane there is another circle containing no 
points of N. For example, the set of points with integral 
cartesian coordinates is nowhere-dense. 

A point set E is said to be exhaustible,* if it is the "sum" 
of a denumerable number of nowhere-dense sets, the term 
"sum" signifying here the set that is constituted by the 
elements that belong to one or more of the nowhere-dense 
sets. That is, an exhaustible set E is one expressible in the 
form 

E = N!+N2+ 

where Ni (i=l, 2, • • • ) is a nowhere-dense set. 
Not every set is exhaustible. The planar continuum, for 

example, is not exhaustible. Indeed, if E is any exhaustible 
set, every circle C contains points not belonging to E. For 
since iVi is nowhere-dense, there is in C a circle C\ containing 
no points of N± ; likewise, since N2 is nowhere-dense, there is 
in C\ a circle C2 containing no points of N2 ; and so on. In 
this manner we define a sequence of circles C\, C2, • • • such 
that Ci contains no points of N\, N2, • • • Nt. Therefore, 
if P is a point contained in every circle Ci (i = l, 2, • • •)> 
it belongs to none of the sets Ni and therefore not to E. 

A denumerable set may be regarded as the sum of a de­
numerable number of sets, each consisting of one element. 
Therefore every denumerable set is exhaustible ; and since 
the planar continuum is not exhaustible, it is not denumer­
able. The proof, by means of the notion of exhaustible sets, 
that the linear continuum is not denumerable is entirely 
analogous—or if we will, a corollary—so that we have another 
proof of the theorem of Cantor. 

A residual set is the complement, with respect to the 
planar continuum, of an exhaustible set ; in other words, if 
R is a residual set, the points of the continuum not belonging 
to R constitute an exhaustible set. 

* Cf. Denjoy, JOURNAL DE MATHÉMATIQUES, (7), 1915, pp. 122-125. 
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The sum of two exhaustible sets E = iVi + iV*2+ • • • and 
E ' = iVY + iVy+ • • • is again representable as the sum 
Ni+Ni' + N2+N2'+ • • • of a denumerable number of 
nowhere-dense sets, and is therefore exhaustible. On the 
other hand, the sum of a residual set and its complementary 
exhaustible set is the entire continuum, which is not ex­
haustible. A residual set cannot therefore be also exhaustible. 

A set S is said to be an I-region ( = open set), if every 
element of 5 is an inner point of S ; i. e., no point of S is the 
limit of a sequence of points not in 5. Thus the set consisting 
of the interior points of one or more polygons is an /-region ; 
but the set consisting of the interior and the boundary 
points of a polygon is not an J-region, because a boundary 
point is the limit of a sequence of points outside of 5. 

A set 5 is said to be a partial neighborhood of the point P , 
if (a) 5 is an /-region, and (b) P is an interior or boundary 
point of S. The interior of a sector of a circle is, for example, 
a partial neighborhood of the center of the circle. 

Suppose now that g(x, y) is a one-valued, real function. 
If 5 is a set in the x^-plane, we shall understand by S' the 
spatial set consisting of the surface points of the surface 
z = g(x, y) that correspond to the points of S; that is, as the 
point (x, y) varies over 5, the point (x, y, g(x, y)) varies 
over S'. We shall say that the function g(x, y) is densely 
approached at the point A s= (x, y) of the x^-plane—or, in 
other words, that the point ^4' = (x, y, z) of the surface z = 
g(x, y) is "densely approached"—if for every partial neigh­
borhood S of A the point A' is a limit point of the set 5 ' . 
Thus, if A' is densely approached, there exists in every 
partial neighborhood S of A a sequence of points An— (xn, yn) 
approaching A as a limit such that the corresponding surface 
points A'n= (xn, yni g(xn, yn)) approach A1 as a limit. 

An alternative definition of dense approach is the following : 
The function g(x, y) is densely approached at -4 = (x, y), if 
for every positive number e, there exists in the ary-plane a 
circle C with A as center such that the points (£, rj) of C 
where |g(£, rj)—g(x, y)\ < e are everywhere dense in C; i. e., 
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every circle interior to C contains at least one point (£, 77) 
such that |g(£, rj)-g(x, y)\<e. 

In terms of the defined notions, we may now state the fol­
lowing general property of real functions : 

For every real, one-valued function g(x, y), the points of the 
xy-plane at which g(x, y) is densely approached constitute a 
residual set. Conversely, if R is a residual set of the xy-plane, 
a function g(x, y) exists that is densely approached at and only 
at the point of R.* 

Without the explicit use of the notion of dense approach 
this theorem, apart from the converse portion, may be re­
stated as follows: 

With every real, one-valued function g(x, y), there is asso­
ciated a residual set R (dependent on g) of the xy-plane, such 
that if A is a point of R, N a partial neighborhood of A, and S 
a sphere having A' as interior point, there is at least one surface 
point (x, y, g(x, y)) in S such that (x, y) is in RN (the set 
common to R and N). 

This property exhibits a remarkable degree of regularity 
possessed by every real function. The property is stated in 
so-called descriptive terms, involving merely the notion of 
density (nowhere-dense, everywhere dense, exhaustible, re­
sidual), but not that of length or measure. In such "de­
scriptive" considerations, it is the residual set that plays the 
rôle of one rich in elements, while the exhaustible set mani­
fests itself as relatively negligible. Our property asserts, then, 
that if we neglect a certain exhaustible set of the x^-plane, 
every remaining point (x, y) will be one of dense approach— 
one, therefore, such that the surface points of z = g(x, y) 
cluster about (x, y, z) with a large degree of what we may 
roughly think of as descriptive symmetry. 

The following property shows that the degree of symmetrical 
clustering is even more considerable : 

With every real, one-valued function g(x, y), there is as­
sociated a residual set R of the xy-plane, such that if A is a 

* Blumberg, TRANSACTIONS OF THIS SOCIETY, vol. 24 (1922), p. 113. 
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point of R, A' the corresponding point of the surface z = g(x, y), 
S a sphere with A' as center, N a partial neighborhood of A, 
and K the set of points of N that are projections of points of S 
that belong to the surface z = g(x, y), then K is not exhaustible, 
and furthermore, K is everywhere dense in the portion of N 
that lies in a circle of the xy-plane having A as center and a 
sufficiently small radius {which may vary with A).* 

The following property shows that, no matter how dis­
continuous a function may be, it yet possesses a certain re­
markable degree of smoothness : 

With every one-valued, real function g(x, y), there may be 
associated—not uniquely of course—an everywhere dense set D 
of the xy-plane (i. e., one containing at least one point in every 
circle of the plane) such that g(x, y) is continuous if (x, y) 
ranges over DA 

Although the first two properties for g(x, y) were formu­
lated on the assumption that g(x, y) is one-valued, they hold 
essentially for many-valued functions, as we mentioned 
earlier. We state the extended theorem for the first property : 

Let g(x, y) be any real function defined for the entire xy-
plane and taking at every point at least one value ; the number 
of values may change, however, from point to point and vary 
from 1 to c, the cardinal number of the continuum. Then the 
points (x, y) such that every surface point (x, y, g(x, y)) is 
densely approached by the surface z = g(x, y) constitute a residual 
set of the xy-plane. 

Our properties, while stated for functions of two variables, 
hold also for functions of one or of any number of variables. 
These properties are, moreover, capable of wider extension. 
For example, it is not necessary to insist that g(x, y) shall be 
defined at every point of the xj-plane. We are thus led to 
functions defined in more general domains than that of 
euclidean n-space. It turns out upon examination that it is 

* Blumberg, TRANSACTIONS, loc. cit 

+ Blumberg, loc. cit. The continuity of g{x, y) over D means tha t 
if (x, y) is a point of D and {(%, yn)} a sequence of points of D having 
(x, y) as limit, then lim g (xn, yn)=g (x, y). 
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necessary to draw upon a relatively small number of the prop­
erties of the plane in order to build the proofs. It is these 
properties that lead logically to our descriptive theorems ; 
we may, therefore, instead of starting with a definite spatial 
object, formulate a set of properties as postulates sufficient 
to insure our theorems as consequences, and thus arrive 
at an abstract generalized theory. Without entering upon 
extreme refinements of generalization, we may say that our 
theorems hold if g(P), instead of being a function of a point 
P — {x,y)1 is a real, one-valued function of an element P 
that ranges over any set © whatsoever, instead of the plane ; 
in other words, with every element P of © there is associated 
a real number g(P). © is furthermore subject to the following 
four conditions : 

1. © is metric ;* that is to say, with every pair of elements 
P and Q of © there may be associated a non-negative, real 
number, which we denote by PQ (Fréchet'sécart) in such a 
way that if P , Q, and R are any three elements of @, then 

(a) PQ = QP, 

(b) TP = 0 , 

(c) "PQ + QR^PR 

If, in particular, © is the set of points in ^-dimensional 
space, the number PQ may be taken as the distance between 
P and Q, and the conditions (a), (b), and (c) obviously hold. 
If © is the set of continuous curves y = g(x), O ^ x ^ l , and P 
and Q stand for two such curves y = gi(x) and y = g2(x), then 
PQ may be defined as max \ gi(x) — g2(x) \, O ^ x ^ l ; this 
definition renders (a), (b), and (c) valid. 

2. © is a "complete space11 (vollstândiger Raum) ;* that is 
to say, if {Pi, P2 , • • • , P n , • • • } is a regular% sequence of 

* Cf. for example, Fréchet, RENDICONTI DI PALERMO, vol. 22 (1907), 
p. 1, and Hausdorff, Grundzüge der Mengenlehre, 1914, p. 211. 

+ Hausdorff, loc. cit., p. 315. 
% The sequence {Ph P2, • • • , Pn, • • * } is regular, if for every positive 

there exists an integer n€ such that P \ J P M < e for \>ne and ix>n€. 
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elements of ©, there exists a limit element P of © (i. e., an 
element P with the property lim„^ oo Pnp = 0). 

If, for example, © is taken to be the set of rational num­
bers of the linear continuum, it is not complete, since a regular 
sequence of rational numbers may have an irrational limit, 
i. e., a limit not belonging to ©. 

3. © contains a denumerable subset T that is dense in ©. 
This means that if P is an element of ©, k a positive number, 
and S the ensemble of points Q of © such that PQ<k (S may 
then be regarded as the set of points interior to the sphere 
having P as center and k as radius) then at least one point 
of T belongs to 5. In the case of the plane, T may be chosen 
as the set of points both of whose coordinates are rational. 

4. © has no isolated points. That is to say, if P is a point 
of © and S the sphere of center P and radius k defined above, 
then 5 contains at least one point of © different from P . 

As particular examples of a complete, metric space with a 
dense denumerable subset and without isolated points, we 
may mention the following : 

(a) Ordinary euclidean n-s pace, 
(b) Hubert space, which is the set of those points in the 

space of a denumerable number of dimensions that are at a 
finite distance from the origin ; in other words, the set of 
infinite sequences {xu x2, • • • } such that xx+x2+ • • • , 
the squared distance of the point (xu x2, • • •) from the origin, 
is finite. The écart between two elements P = ( # i , #2, • * * ) 
and Q=(yhy2j • • • ) is defined as V(*i — yi) 2+{x2-y2f+ 

(c) Function space, which consists of all real, continuous 
functions g(x) defined for a^x^b. The écart between two 
points, i .e., two curves, y = gi(x) and y=:g2(x), is defined as 
max \gi(x)-g2(x)\y a^x^b. 

We now turn from the "descriptive" properties of functions 
i. e., those concerned essentially with density, to metric con­
siderations, which involve lengths and areas. 

The definition of a planar set of zero measure is analogous 
to that of a linear set of zero measure, which, we recall, is 
one enclosable in a denumerable number of intervals of ar-
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bitrarily small total length. To cover a planar set we use 
rectangles instead of intervals, so that a set is of measure 
zero, if it is enclosable in a denumerable number of rectangles 
of arbitrarily small total area. 

Let 5 be a partial neighborhood of the point P ; Cr, a circle 
of radius r having P as center ; and Sr, the portion of 5 lying 
in C, ; then if 

lim a r e a & _ n 

area Cr 

the set 5 is said to be a vanishing partial neighborhood of P. 
If, however, this limit does not exist, or if it exists and is 
different from 0, 5 is said to be a non-vanishing partial neigh­
borhood of P . For instance, a sector of a circle is a non-
vanishing partial neighborhood of the center ; while the area 
bounded by an arc of a circle and the two tangents at its ex­
tremities is a vanishing partial neighborhood of the extremities. 
These are simple examples ; more complicated ones indicating 
better the diversity of possibilities may be constructed by 
means of /-regions consisting of a denumerable number of 
simple areas like polygons or circles. 

We shall say that the function g(x, y) is negligibly approached 
at the point P==(xyy) via the partial neighborhood Sf if a 
sphere exists with P'==(#, y, g(x, y)) as center such that if 
T' is the set of points of the surface z = g(x, y) that lie in the 
sphere, and T is the projection of T' upon the :ry-plane, then 
the portion of T that lies in 5 is of measure zero. 

We may now state the following theorem :* 
Let g(x, y) be a real, single-valued function defined for the 

entire xy-plane. Then the set of points of the xy-plane that 
possess a non-vanishing partial neighborhood via which g is 
negligibly approached is of zero measure. 

In other words, if we are blind to what happens at the points 
of a certain set Z of zero measure, there is visible at every 
point P of the surface z = g(x, y) an appreciable clustering 

* TRANSACTIONS, loc. cit. 
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of the points of the surface via every non-vanishing neigh­
borhood of P , appreciable, in the sense of non-negligible 
approach. Again (and now from the point of view of measure) 
a remarkable degree of regularity. 

We shall mention one more property, which reveals even 
more strikingly the smoothness inherent in every function. 

To this end, we first extend our definition of measure. 
Let S be a point set contained in a rectangle of area a ; and 
C, the complementary set with respect to the rectangle, i. e., 
the set of points of the rectangle not belonging to 5. Then 
we say that 5 is of exterior measure k if (1) it is possible to 
cover S by means of a denumerable number of rectangles of 
total area exceeding k by as little as we please ; and (2) it is 
impossible to cover 5 by means of a denumerable number of 
rectangles of total area less than k. Similarly, we define the 
exterior measure m of the complementary set. These num­
bers k and m always exist. Not so, however, with the measure 
of S ; it may or may not exist. For it may happen, as examples 
have shown, that k+m>a; in this case, it is not possible 
to assign a measure to S that may, without involving essential 
contradictions, be regarded as a generalized length. On the 
other hand, if k+m comes out equal to a we define k as the 
measure of S. In case the exterior measure is zero, the 
measure always exists ; this is why it was not necessary, in 
connection with sets of zero measure, to refer to the possi­
bility of non-measurable sets. 

Let now e be a positive number ; P = (£, rç), a point of the 
:ry-plane ; and MPe, the set of points (x, y) such that \g(x,y) — 
g(£> v) I <€. Let C be a circle of the :ry-plane having P as 
center and r as radius ; and ikfp€<?, the subset of MPe that lies 
in the circle C. Then if 

lim e x ^ e r î ° r measure of Mpec 

area of C 

the set Mpe is said to have the exterior metric density 1 at 
the point P , In this case—and from the point of view of 
regarding, for the nonce, the exterior measure as representing 
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the metric extent of a set—the set Mpe has the maximum 
possible metrical clustering about the point P ; and in case 
the exterior metric density does not exist or is different from 
1, the metrical clustering is deficient. Now it may happen 
that the function g(x, y) and the point P are such that for 
every e > 0 the set Mp€ has 1 as its exterior metric density 
at P . In this case, we say that g(x, y) is quasi-continuous 
at P—the term quasi referring to our use of exterior measure 
instead of measure.* 

We may now state the following property :+ 

The function g is quasi-continuous except at the points of a 
set of zero measure. 

The metric properties of unconditioned functions may also 
be extended to many-valued functions. While they hold for 
all euclidean spaces of a finite number of dimensions, their 
extension to a space of a denumerable number of dimensions 
would require a satisfactory definition of measure for such a 
space ; this is, at present, wanting. A general space can, of 
course, be defined by means of postulates for which the 
metric theorems hold, but these postulates would be more 
stringent than in the case of the descriptive theorems, where 
comparatively few and simple conditions were found adequate. 

In closing, I shall mention several properties of a third 
type concerning unconditioned functions. As before, these 
properties hold for single-valued functions^ (#i, #2, - • * > #») 
of n variables defined at every point of n-space. 

%If Sis the set of points where a given f unction g (xi, x2l • • -,xw) 
is continuous, there exists an infinite sequence I\} 12, • • • > of I-
regions such that S is the aggregate of points common to them 

* In case measure were used, we could properly regard g(x, y) as 
essentially continuous, from the point view of the convention that sets 
the zero measure may be regarded as negligible. 

+ TRANSACTIONS, loc. cit. 

% For the case of one variable, see W. H. Young, Über die Einteilung 
der unstetigen Funktionen und die Verteilung ihrer Stetigkeitspunkte, W I E N E R 
SITZUNGSBERICHTE, vol. 112, Abt. l ia , p. 1307; for the general case, H. 
Blumberg, On the characterization of the s t of points of \-continuity, 
ANNALS OF MATHEMATICS, (2), vol. 25 (1923), p. 118. 
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all. Conversely', if S is representahle as the common part of a 
sequence of I-regions, there exists a function g(xi, x2, • • • , xn) 
such that g is continuous at the points of S and discontinuous 
elsewhere. 

With the aid of the various types of saltus, we may define 
other types of continuity. A function is continuous in the 
ordinary sense, if its ordinary saltus is zero. In similar manner, 
we say that a function is f-continuous, d-continuous, e-con-
tinuous,* or z-continuous at a point P if its /-saltus, d-saltus, 
6-saltus, or z-saltus respectively vanishes at P. And we have 
the following theorem,4* in which we may substitute for the 
letter X any one of the four letters ƒ, d, e, or z : 

The set of points where a function of n variables is ^conti­
nuous is representahle as the common part of an infinite sequence 
of I-regions ; conversely, if S is representahle as the common 
part of a sequence of I-regions, a function exists that is X-
continuous at every point of S and \-discontinuous elsewhere.% 

OHIO STATE UNIVERSITY 

* The e-saltus arises when exhaustible sets are regarded as negligible. 
+ Blumberg, ANNALS, loc. cit. 

% The following articles,—all in the FUNDAMENTA MATHEMATICAE,— 
which the writer had occasion to see during the course of publication of 
the present address, belong in whole or in part to our subject: W. Sier-
pinski, Sur une généralisation de la notion de la continuité approximative, 
vol. 4 (1923), p. 124; A. Rajchman and S. Saks, Sur la dérivabilité des 
fonctions monotones, loc. cit., p. 204; S. Saks, Sur les nombres dérivés des 
fonctions, vol. 5 (1924), p. 98; S. Kempisty, Sur les f onctions approximative­
ment discontinues, vol. 6 (1924), p. 6. 
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