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COURANT AND H1LBERT 
ON MATHEMATICAL PHYSICS 

Methoden der mathematischen Physik. Bd. I. By R. Courant and 
D. Hubert. Berlin, Julius Springer, 1924. xiii + 450pp. 

The book under review is the twelfth volume of the series Die 
Grundlagen der mathematischen Wissenschaften in Einzeldarstellungen. 
It is the second book of this series to be devoted to mathematical 
physics, it being preceded by volume IV, Madelung's Die mathematischen 
Hilfsmittel des Physikers.* This earlier volume covers very extensive 
ground but, necessarily, in a rather cursory manner. The present 
volume, on the contrary, centers around one single physical problem, 
the oscillation problem, with its mathematical equivalents, the boundary 
value and expansion problems. 

These are the main problems. Incidentally the reader will pick up 
a good deal about methods which are applicable to other problems of 
mathematical physics, but he will have to supply the applications 
himself. However, in these days of Morbus relativitus the information 
might be welcome that the word tensor appears on page 3 of the book 
and disappears on page 30, and it is not frequently used. 

A few words regarding the joint authorship should be appropriate. 
The book is obviously and avowedly written by Courant. It is true 
that most of the subject matter originated directly or indirectly with 
Hubert, whose spirit hovers over almost every page of the book. But 
the reader can easily verify, by looking up the several references, that 
a considerable portion of the book is based upon Courant's own in­
vestigations. This is especially the case with Chapter VI. Otherwise, 
the simple choice of methods, the fondness of heuristic considerations 
and a certain delicate touch of the pen, sometimes a bit vague but 
always elegant, betray the writer if nothing else does. All these 
qualities make the book easy and enjoyable reading. 

We have already mentioned that the book deals with the oscillation 
problems of mathematical physics. This theory culminates in Chapters V 
and VI of the book, the former giving the equivalent boundary value 
and expansion problems, the latter the properties of the characteristic 
values and functions. The existence of the solutions is, occasionally 
postulated, many existence proofs being postponed to the second volume 
of the book which will appear later. The first four chapters lay 
a foundation for the theory; they deal with linear transformations and 
quadratic forms, expansions in terms of orthogonal functions, linear 

* Review by B. 0. Koopman, this BULLETIN, vol. 30, Nos. 5-6 (May-
June, 1924), p. 272. 
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integral equations and the elements of the calculus of variations. 
In the seventh and last chapter some special functions defined by 
boundary value problems are dealt with in more detail. 

The methods employed in the book are mostly very simple. Equi-
continuity and Bessel's inequality are the only fairly novel tools which 
are used extensively. The integrals occurring are seldom interpreted in 
the sense of Lebesgue. Stieltjes and Hellinger integrals are completely 
avoided. In order to be able to place themselves on such an elementary 
basis the authors purposely restrict the discussion to functions which, 
together with the necessary number of derivatives, are continuous in 
adjacent intervals (stückweise stetig). 

The leading idea in the greater part of the book is that the character­
istic values and the characteristic functions* which belong to a given 
oscillation problem, satisfy certain maximum-minimum conditions. Thus 
the nth. characteristic value is the upper limit for the minimum of 
a particular quadratic functional F(cp) associated with the problem 
when the function y is properly normalized and satisfies (n — 1) variable 
conditions of orthogonality. The function yn, supposed to exist, for 
which Min.F(<jp) reaches its upper limit, is the nth characteristic 
function; the corresponding (n—1) orthogonal functions are the preceding 
characteristic functions. This independent definition of the nth. character­
istic value is due to Courant, though it seems to have been expressed 
for finite quadratic forms earlier by E.Fischer; the classical recurrent 
definition goes back to H. Weber. This simple principle is manipulated 
with great dexterity and yields surprisingly rich results. 

The reader meets this guiding notion as early as on page 11 in the 
first chapter where the principal axes of a central hyper-quadric are 
found. It is clearly expressed for quadratic forms on page 17. 
The whole first chapter is essentially an algebraic analog from the 
theory of quadratic forms to the oscillation theory for continuous bodies 
developed later. It is the well known Hubert theory oriented and adapted 
for a particular purpose. The second chapter opens with a general 
discussion of orthogonal functions, followed by a discourse on equi-
continuous functions. The reader should notice the correction on 
page xiii referring to the discussion on page 40. In § 3 we meet the 
notions of measure o f independence m and asymptotic dimension number r 
for a set of functions f^x). The former is defined as the minimum of 
the quadratic form 

n n sib 

.^fijkh for ^ ^ = 1» where /tf=J ƒ<//**• 

* Eigenwerte und Eigenfunktionen. The reader should notice that 
the authors use the term characteristic numbers (charakteristische 
Zahlen) for the reciprocals of the characteristic values. 
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If the functions fv • • •, fn are linearly dependent, m = 0; if they are 
normalized and orthogonal, m = 1. The authors do not mention that 
this is the maximum value of m for normalized functions. Similarly 
the Gramian is discussed at various places, but the authors fail to 
notice that det(/^) < fnf22 • " fnw

 w n e r e t n e equality sign holds if 
and only if the functions are orthogonal to each other.* The asymptotic 
dimension number is defined as the least integer r such that, if s > r, 
the measure of independence of the functions fn , fn , • • •, fn converges 
to zero when nv n2, • • •, ns -> oo. The remainder of the second chapter 
is devoted to special orthogonal systems and to the approximation 
theorem of Weierstrass, Fejér's proof for trigonometric polynomials, 
and Landau's for ordinary ones. 

In the third chapter we find an outline of the theory of integral 
equations. In addition to the classical theory of such equations, we 
find two new methods for the existence proofs. Both are based upon 
uniform approximation of the kernel by degenerate kernels, but the 
method of extracting a convergent sequence from the approximate 
solutions differ. One method employs the properties of equi-continuous 
functions, the other the asymptotic dimension number. For the 
symmetric case, the maximum-minimum properties of the characteristic 
values and functions play a fundamental role in the discussion. We 
miss a reference to Heywood and Fréchet's treatise in the bibliography 
appended to the third chapter. 

The introduction is the most interesting part of Chapter IV, the 
elements of the calculus of variations. Here we are granted a fore­
taste of the direct methods of solving variational problems by means of 
minimal sequences which subject will be one of the main features of 
the second volume. In § 9 Hamilton's principle is introduced, with 
the aid of which the differential equations of vibrating masses are 
derived. The other parts of the chapter are more useful than exciting. 

These differential equations form the main object of Chapter V. 
Here the boundary value problem is reduced to the solving of a 
symmetric integral equation by means of the corresponding Green's 
function. The existence of such a function is proved merely in the 
linear case ; for two or more dimensions it is postulated and the proof 
will be given in the second volume. A solution of the expansion 
problem is given which is improved upon in the following chapter by 
reducing the restrictions. Various simple boundary value problems are 
treated explicitly. 

* For a proof see 0. Dunkel, Integral equalities with applications 
to the calculus of variations, AMEEICAN MATHEMATICAL MONTHLY, 
vol. 31 (1924), pp. 326-337. This interesting paper unfortunately does 
not give any references to the literature. 
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In Chapter VI we reach the climax. The maximum-minimum principle 
is given full play and is used for a very interesting qualitative dis­
cussion of the dependence of the characteristic values upon the data 
of the problem, namely the coefficients of the equation, the basic 
region and the conditions on the boundary. This discussion is facilitated 
by the following simple observation: The minimum of the functional 
F(y), when y ranges over a certain field of functions, is not decreased 
by restricting the field, and not increased by enlarging the field. The 
same principle gives a simple determination of the asymptotic distribution 
of the characteristic values, the basic region under consideration being 
approximated by rectangles for which the characteristic values are 
known. An application to the black-body problem is given. 

The seventh chapter is not so well done as the rest of the book. 
To be sure, there are brilliant points: the interpretation of Laplace 
integrals at the beginning of the chapter and the presentation of the 
saddle-point method at the end are gems. But the long and involved 
treatment of Bessel's functions seems scarcely justifiable except on the 
basis that contour-integration is a method of mathematical physics. 
It would have been simpler to start directly with the differential 
equation for Ji(x)jx^ on page 399 and leave out most of the preceding 
discussion for which the reader could have been referred to the 
corresponding parts of Watson's standard treatise. A graver remark 
must be directed against the discussion of the zeros of Bessel's functions 
on pages 412-414. The formula (33) on page 413 becomes illusory for 
A<C—1, and the conclusions drawn in this case concerning the complex 
zeros of J^(x) are erroneous. On page 419 Legendre's function of the 
second kind, #,,(#), is defined by an integral for $(V)>—1 and by 
the relation Qv(x) = Q_1_r(x) for $t(r)<Z0. This implies a contra­
diction in the common strip which could be avoided by making 
$(*/) = — i the dividing line between the two definitions. Why should 
the symbol Qv(x) represent different analytic functions of v in different 
parts of the ^-plane? Why not use the original definition by a contour-
integral which is valid for every value of v1 not a negative integer? 

This finishes our survey of the different chapters. If our labor has 
not been in vain, it ought to be clear to the reader of this review 
that the book, in spite of its restricted scope, is rich in material and 
in points of view which are either novel or little known. The book — 
as most human work — is not perfect, but the imperfections are 
mostly on side-issues. It was obviously not meant as an opiate, 
but intended to stimulate interest, discussion and research in a field 
which still belongs to the richest in mathematical physics. We look 
forward to the appearance of Volume II with eager expectation. 

EINAB HILLE 


