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relations are 

(3) 7^ = 1, hp = l, . . . , hf = l 

where those of the exponents d±, d2,..., dr which are not 1 
are the invariant factors of the matrix | yu |. 

An operation of G is of finite period if and only if it is in 
the group H generated by the operations hl7 h2y . . . , hr and 
the relations (3)* Hence H contains all operations of G of 
finite period. Moreover H is a finite group because it is 
commutative and generated by a finite number of operations 
each of finite period. The invariant factors of | ru | are 
invariants of H (Kronecker, BERLINER MONATSBERICHTE, 

1870, p. 885). 
These invariant factors are what Tietze calls the Poincaré 

numbers of the group G. They are invariants of G because G 
determines the commutative group G uniquely and G deter­
mines the finite group H uniquely and H determines the 
invariant factors uniquely. 

P R I N C E T O N U N I V E R S I T Y 

ANALYTIC FUNCTIONS AND PERIODICITY* 
BY J. F. RITT 

This paper presents two theorems which show that the 
condition that a function be periodic can be analyzed, in 
different ways, into a set of requirements, from the satis­
faction of only one of which, if the function is analytic, 
the periodicity of the function can be inferred. The 
theorems are 

THEOREM A. If f{z) is a uniform analytic function, and 
if an a > 0 exists such that every z1 at tvhichf(z) is analytic 
is the center of a circle of radius a on which a z2 lies at 
which f(z) is analytic and assumes the same value as at zl9 

then fiz) is periodic, and has a period of modulus a. 

* Presented to the Society May 3, 1924. 
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THEOREM B. If f(z) is a uniform analytic function, and 
if every Z\ at which f{z) is analytic belongs to a sequence 
of non-coincident points in arithmetic progression, at each 
of which f(z) is analytic and assumes the same value as 
at zly then f{z) is periodic. 

In A, the condition that z±—z2 have a constant modulus 
can be replaced by the condition that it have a constant 
argument, or, for that matter, a constant real or pure 
imaginary part. Also, in both theorems, the condition that 
f(z) be uniform is not essential, and is made only to keep 
cumbersome statements out of the proof. 

Theorems similar to the above can be proved for other 
peculiarities than periodicity. Many types of functional 
equations can be studied from the point of view of this 
paper. 

We shall use the following lemma. 
LEMMA. Given a non-constant uniform analytic func­

tion f(z), and a transformation which carries every Z\ at 
which f{z) is analytic into a z2 at which f(z) is analytic 
and assumes the same value as at Z\, there exists an analytic 
function <p(z) such that z2 = SP(#I) for & set °f points z± 
dense in some area. For every z in this area, f[<p(z)] = f(z). 

If f(z) is analytic at z and if f\z) + 0, there are circles 
with z as center inside of which f{z) is analytic and assumes 
no value more than once. For any z, one of these circles 
— call it c—has a maximum (perhaps infinite) radius. Those 
maximum circles c for the center of which, z = x-{-iy, 
both x and y are rational, are countable. Let them be 
arranged in a sequence 

C i , C%, . . . , Cn, . . • , 

It is easy to see that every z for which f{z) is analytic 
and f{z) 410 is interior to some cn* 

Take now any circle y inside of which f(z) is analytic 
and assumes no value more than once. For every zx in y, 
the hypothesis of the lemma provides a #a. Those points z2 

at which f{z2) = 0 are countable, for the zeros of an 
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analytic function which is not identically zero are isolated. 
Every other z2 lies within some cn\ associate with its zt 

the cn of smallest n in which z2 lies. In this way those 
points zx of y for which f\z2) 410 are separated into a count­
able number of sets. Not all of these sets can be nowhere 
dense, for their sum differs from all of y by a countable set. 

Hence there is a cn and a set of points—call it M—dense 
in some area within y, such that for any zx of M, z2 lies 
within cn. 

Take, and hold fast momentarily, any zx of M which is 
the center of some circle—call it r—in which M is dense. 
As f(zt) — f(z2), we can take r so small that ƒ(z) assumes 
no value in r which it does not assume within cn. To 
associate with every point of r that point of cn at which ƒ (z) 
assumes the same value is to define a cp(z) which is analytic 
in r. Furthermore, for a set of points z± dense in r , 
z2 — <p(zi). This proves the lemma. 

It is now easy to prove Theorem A. Because \z2—zt\ 
is constant, the modulus of y>(z) is constant for a set of 
points dense in r. As the modulus of y(z) is continuous, 
it is constant throughout F. An analytic function with 
a constant modulus is a constant. Let h be the constant 
value of <p(z)-, of course h^O. Then f{z-\-h) = f(z) for 
every z in r , and hence throughout the domain of existence 
of ƒ(*). 

Considering Theorem B, suppose that, for every z± at 
which f{z) is analytic, a number h (z±) + 0 exists such that 
f(z) is analytic, and equal to f(zt), at every ^i+m^fe) 
(m = l , 2 , . . . ) . 

According to the lemma, there exists a circle r , a set M 
dense in r , and an analytic y{z), such that 9>(>i) = £i+M#i) 
for every gt in M. 

Suppose that <p(z)—z is not constant. Barring out the 
trivial case in which f(z) is constant, we may assume that 
neither f(z) nor y(z)—z assumes any value more than 
once in T; this can always be brought about by replacing r 
by some circle within r . Let T' and r" be two circles 
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concentric with r , and of radii respectively one-half and 
one-quarter that of r. 

Consider the function 

•^ + [*>(*)—*L 

where m is any positive integer. As m increases this 
function approaches cp(z)—z uniformly in r , so that, for 
m large enough, it assumes no value more than once in T', 
but assumes in T' every value which y{z)—z assumes 
in r " . The values assumed in T" certainly cover some 
circle 4. 

Consequently, for m large enough, the function 

y<m(?) = z-\-m[ip{z)—z\ 

maps r' conformally, in a one-to-one manner, upon a region 
2m which covers a circle Am, of radius m times that of A» 

Let z be in r'. Associate with ipm(z) the number ƒ(*). 
This defines a gm(z), analytic in 2m. Now tymiz) maps 
those points of M which lie in r' into a set of points 
dense in 2m. Since V*»(*i) = £i+^M#i) f° r #i i*1 ^ 
ƒ($) and ^m(^) are equal for a set of points dense in 2m. 
and therefore throughout 2m. 

As f(z) assumes no value more than once in JP', ƒ(#) 
assumes no value more than once in 2m. Consider any z± 

of M such that ipm{zi) is very close to the center of 4m. 
Since h{z) = <p(z)—z for z in if, A(#) is bounded for z 
at once in M and in JT". Hence if m is large, so that 
4m is large, tym(zi)~{-h(zi), at which ƒ(z) takes the same 
value as at Vm(£i)« will lie in 4W, and so m ^>m* This 
contradiction with the statement at the head of the 
paragraph proves that y(z)—z is constant; it is not zero, 
for no h(z) is zero. As f[<p(z)] =f(z) for z in r , f(z) is 
periodic. 

COLUMBIA U N I V E R S I T Y 


