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(cf. this BULLETIN, volume 25 (1919), page 449) the following 
theorem is fundamental: if we designate by a Minkowski 
surface in Rn a finite surface in space of n dimensions, having 
as its chief characteristic a center of symmetry toward which 
it is nowhere convex (cf. 1. c. for specific definition), then a 
Minkowski surface in Rn and of volume ^ 2n will contain 
at least three distinct lattice points (i. e., points whose coor­
dinates are integers) if its center is a lattice point. In order 
to extend the usefulness of the geometry of numbers, Professor 
Blichfeldt has amplified this theorem to read as follows: (1) 
a Minkowski surface in Rn of volume ^.2nk and whose center 
is a lattice point, must contain more than k — 1 distinct pairs 
of lattice points in addition; (2) a Minkowski surface in Rn 
which contains k lattice points, its center being one, must 
have a volume > (k — ri)jn\9 if these k points do not all lie 
on a linear JR»-I. Some applications of this theorem were 
presented. 

B. A. BERNSTEIN, 
Secretary of the Section. 

AN IMAGE IN FOUR-DIMENSIONAL LATTICE 
SPACE OF THE THEORY OF THE 

ELLIPTIC THETA FUNCTIONS. 

BY PROFESSOR E. T. BELL. 

(Read before the San Francisco Section of the American Mathematical 
Society June 18, 1920.) 

1. In his memoir on "Rotations in space of four dimen­
sions"* Professor Cole defined a system of four mutually 
orthogonal lineoids yzw, xzw> xyw, xyz (which we shall denote 
by X, Y, Z, W respectively) through a point 0, the four lines 
and six planes determined by these, and with reference to 
this system found the transformations into itself of a sphere S 
with center at 0. Henceforth we assume the radius of S 
to be V/i, where n is an integer > 0. From this system we 
shall derive an image of the theory of the elliptic thêta func-

*Amer. Jour, of Math., vol. 12 (1890), p. 191. 
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tions by considering the reflexions of certain point configura­
tions C, C'y C", C", Civ lying upon S with respect to 0 and 
the bisectors of the angles between X, F, Z, W, a bisector of 
an angle between two lineoids being defined as a locus of 
points equidistant from the two. The space about 0 is 
latticed by four systems of lineoids parallel respectively to 
X, Y, Z, W, the successive lineoids in each system being at 
unit distances apart. We shall call this the unit lattice L. 
Any point all of whose coordinates are integers belongs to L; 
and conversely L contains only such points. Any integer 
> 0 being in several ways a sum of four integral squares, S 
always contains points of L, and these are symmetrical in 
pairs with respect to 0. 

Denote by L' the lattice containing all those points and 
only those whose coordinates are (4a, 46, 4c, 4d), where a, b, 
c, d take all integral values (including zero) from — oo to + °° > 
and by apyô the lattice derived from U by successive trans­
lations of 1/ through distances a, /3, 7, ô parallel respectively 
to X, Y, Z, W, where a, /3, 7, 8 are integers ^ 0, so that 1! 
is 0000. There clearly are in all precisely 256 distinct lattices 
afiyb, each of which is contained in L, and these may be repre­
sented by symbols a'fi'y'b', where a', j3', 7', ô' are the positive 
residues mod 4 of a, /3, 7, 8. For brevity we assign current 
numbers to a special set of 64 contained in the 256. Only 
the a:'j3'7'§' wherein a', j8' are both even or both odd are 
required in the sequel, and likewise for 7', ô'. The requisite 
half-symbols ce'|8', y'b' are therefore 00, 02, 11, 13, 20, 22, 
31, 33. Write 

20, 22, 02, 00 s 2, 4, 6, 8, 
11, 13, 31, 33 s l, 3, 5, 7, 

respectively. In this notation the lattice 0222 is 64; the 
current number of 3320 is 72; that of 1311 is 31; 3100 is 58; 
0231 is denoted by 65, etc. To signify that all the points of 
a certain configuration C belong to one of these lattices, say 
to ij, we give C the corresponding double suffix, C#. The 
theory of the theta functions is formally equivalent to the 
symmetries of certain C# lying upon S. By the formal 
equivalence of A, B we mean that each implies the other. 

2. Consider first any point P lying within (not on any of 
X, F, Z, W) any one T of the sixteen right tetraedral angles 
into which space is partitioned by X, F, Z, W. Bisect the 
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angles which any one of X, Y, Z, W, say X, makes with the 
remaining three, and denote by Yf> Zr, W' those parts of the 
bisectors which lie within T, and by U', V', TJ", V", TJ"', V" 
the like parts of the bisectors of the angles between the three 
pairs of opposite pairs X, Y and Z, W; X, Z and Y, W\ 
X, W and Y, Z, viz., U' is the bisector for X, Y; V' for Yy Z, 
etc. (We have chosen the internal bisectors with respect to 
the angles of T.) Reflect P in Y', reflect the image in Z', 
and reflect this image in W, getting finally the point Pi. 
In whatever order the three successive reflexions are performed, 
it is clear that the same Pi is reached. From Pi in the same 
way derive P2, from P2 similarly P3, and from P3 in the same 
way P4. Then P4 = P. Second, if P lies on at least one of 
X, Y, Z, W, we avoid ambiguities (of sign) by requiring the 
reflexions to be performed so that the signs of the coordinates 
of P are unchanged; e.g., the signs being (+H ) are to 
be the same before and after reflexion. Reflect P in 0, 
getting P0; join the centroid II of P0, Pi, Pi, Pz to 0, and 
produce Oil through II to cut S in P' , which point we shall 
call the mate of P. Reflect P ' in TJ', reflect the image in V', 
getting P", called the first skew mate of P. Similarly from 
P ' and TJ", V" get P '" , and from TJ'" and V", get Piv, the 
second and third skew mates of P. Note that P', • • •, Piv 

are significant only with respect to the particular T in which 
P lies. Taking the mates of all points in any configuration C 
we get its mate C', and similarly for the first, second and third 
skew mates C", C", Cl\ 

We shall be concerned with two kinds of symmetry about 
0 of Cij and their mates. If A, B are any configurations such 
that each may be brought into coincidence with the other by 
reflexions in 0 of some (or all) of its points, A, B are called 
images of each other. All those points of any configuration 
C which are such that no one of them is the reflexion in 0 of 
another, form a configuration called the residue of C; and 
any configurations A\9 B\ are said to be skew images of each 
other when their residues coincide. 

Finally we need also the idea of lattice configurations with 
multiple points. Let each point of Ci, O2, • • •, Cr belong to 
the unit lattice. By C\ + £2 + • • • + Cr, = C, we mean the 
configuration which consists of all the points of Ci, C2, • • •, Cr. 
A point occurring in precisely s of the d is multiple of order 
s in C; and two coincident configurations are identical when 
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and only when points occupying the same position in both 
are of equal multiplicities. In particular if A, B are images 
or skew images of each other, the points in any pair which 
are regarded as reflexions in 0 of one another must be of the 
same multiplicity. To indicate that each point in C is of 
multiplicity s, we write $C. 

We can now give the image of the single theta functions. 
The geometrical theorems will first be stated, their theta 
equivalents then pointed out, and the means for passing from 
one to the other briefly indicated. The geometry can be 
derived simply from first principles. It is shorter, however, 
to proceed as in § 4. The eleven images can be compressed 
into one relating to S and the unit lattice, but the statement 
is complicated. The eleven exhibit a manifold symmetry 
recalling that of crystals, which becomes evident when the 
dj and their mates and skew mates C#', Ci/', etc., are written 
with the suffixes in full, thus, Coon, 03320'. In all that follows 
the dj, and therefore also their mates and skew mates, are 
configurations of points lying on the S of radius Vr& defined 
i n § l . 

3. The first two theorems concern the case n = 0 mod 4, 
and the configurations 

Co = C22 + C20 4~ ^62 "^ ^b6> ^ 2 s ^24 ~^~ ^28 ~^~ ^64 "t" ^68 > 

0 4 E= CM + C48 + Cg4 "*l~ ^88, Ce = C42 + C46 + Cs2 + ^86 J 

Cl = Cn + Cy? + Cn + C77, Cz = C13 + C15 + O73 + C75, 

Co = Czz + Cz6 + C55 + Cö3, C7 = C3I + C37 + C51 + CÖ7 • 

THEOREM I. Each of C0 + C4, Ci + C6 t* £/&£ ima#£ o/ its 
mate, and each of C2 + CO, C3 + C7 is tte imajfe of the mate 
of the other. 

THEOREM II. The configurations in each of the following 
pairs are images of each other: 

Co + C2 + C4' + C6' + d + Cz + C5' + C/, 

Co' + C2' +Ct+C* + Cx' + C3' + C5 + C7; 

Co + C2 + C2' + C4' + d ' + C5 + C7 + C/, 

Co' *+• C4 + Ce -j~ Ce' -j" Ci + C3 + Cs' + Cs'. 
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The next two are f or n = 2 mod 4, and the configurations 

J5l = C12 + Cw + C72 + C76, B$ = C34 + ^38 + C54 + ^58, 

J55 == C14 + Cis + C74 + C78, #7 = C32 + C36 + C52 + C56. 

THEOREM I I I . B\ + J53 is ^ e image of its second skew mate, 
and B5 + £7 is the image of its mate. 

THEOREM IV. Bi + B%" is the image of B\" + P 3 , and 
Bb' + J?7 is the image of J55 + P7'. 

The next is also f or n = 2 mod 4, and the configurations 

Di s Ci6 + Cis + C36 + C38 + CÖ2 + Cu + C72 + C74, 

D2 == C12 + Cl4 + C32 + C34 + C56 + C58 + C76 + C78. 

THEOREM V. The following are skew images of each other: 

2D1 + Dx' + D 2 " + 2 V " + D2
iv, 

2Z)2 + D2' + DÏ' + ZV" + Di lv. 

4. The foregoing theorems imply the theory of the theta 
functions. For, if ƒ, g are single-valued functions of four 
variables existing when each variable takes integral values §j 0, 
such that 

f(x, y, z, w) = ƒ ( - x, - y, - z, - w), 

g{x, y, z} w) = - j r ( - a, - y, - s, — w), 

and otherwise are wholly arbitrary, we may express that A, B 
are images, that A, B are skew images, by 

S/(ai , a2, «3, a4) = 2/ ( f t , ft, ft, ft), 

Sjf(ai, «2, «8, «4) = 2#(ft, ft, 08, ft) 

respectively, the S's extending to all points {OL\, ce2, «3, «4) 
of ^4, and (ft, ft, 183, 184) of P . On remarking that if 
P s («1, a*, x9, XA), then P ' , P " , P ' " , P i v = fo', a:,', »8', a / ) , 
(#2', £i', #4', #3'), (#3', #4', #i', #2'), (#4', 0:3', #2', #1'), where 
x/ = ^ — #* and 2s = #1 + #2 + #3 + #4, we may easily 
verify that the five theorems are equivalent to the following 
analytical restatements of them. The m* denote odd integers 
> 0, the h even integers $ 0, representing n > 0 in the forms 

4 4 

13 m*2, 23 h2, mi2 + ra2
2 + h2 + Z4

2, 
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and summations are with respect to all U, m,- for a given n. 
The rest of the notation is : 

2Xi = h+ h, 2X3 = h + h, 2ni — mi + m2, 2ju3 = w3 + m4, 

X =Xi + X3, M = M I + M 3 > v = M I + ^ 3 , 2<x=mi—l+h, 
h' = X — Z;, m/ = ju — m;, Z/' = j» — Z,-, 7»/'= y — TO». 

Corresponding to theorems (I)-(V) we now have the follow­
ing: 

(10 S [ ( - 1)" + l]/(mi, m2, ro„ m4) 
= 2 [ ( - 1)" + l]/(mi', m2', m,', m4'), 

S[(— 1)" — l]/(mi, m2, m3, m4) 
= 2 [ ( - 1 ) A - l]/( ii', V, W, h'), 

2 [ ( - l ) » + l ] / ( Z1; h, h, k) 
= 2 [ ( - l ) * + l ] / ( h', V, W, h'), 

S [ ( - 1)A - !]ƒ( h, h, h, h) 
= 2 [ ( - 1)" - l]/(mi', m2', m,', m4'). 

(II') S [ ( - l)"y(mi, m2) ro„ m4) + ( - 1 ) ^ , Z2, h, h)] 

= 2 [ ( - l)«/(m/, ««', m3', m4') + ( - l)*jW, k', W, h')\, 

2 [ ( - l)*«/(™i, m2, m3) m4) - ( - l)AlM, 4, Z3, Z4)] 

= 2 [ ( - l)"y(mi', m2', m3', m4') - ( - 1 W , Z2', V, h')]. 

{Ill') 2 [ ( - 1)" + l]f(mu m2, h, k) 

= 2 [ ( - 1)" + 1]/(Z3", Z4", mi", m2"), 

2 [ ( - 1)" - l]f(mi, m», h, h) 

= 2 [ ( - 1)" - l]/(m!", m2", V', Z«"). 

(IV) 2 [ ( - ) " + ( - l)»]f(mi, m2, Z3, Z4) 
= 2 [ ( - 1 )" + ( - l)Xa]/(Z3", V', mi", m2"), 

S[(_ I)M. _ (_ l)^]/(m i , m2, Z3, Z4) 

= 2 [ ( - 1)« - ( - l)**]/(mi", m2", Z3", Z4"). 

(V') 2 S ( - l)aff(mi, m,, h, h) 

= 2 ( - 1)%(Z4', h', m»', mi') + jr(V, Z4', mi', m2') 
+ g(m2', mi', h', k') - g(mi', m2', Z3', k')]. 
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To pass to the theta functions, replace f(ai, a2, ce3, ce4), 
gipLi, a2, OJ3, «4) by the cos, sin respectively of (cei#i + a2x2 

+ a%xz + a^x^), where x\, x2i #3, x± are parameters. In this 
form the trigonometric sums involving unaccented letters in 
F- IV ' , and the left of the identity in V', are readily seen to be 
the coefficients of q4n or g4n+2 in products of the form 

#a(*b g4)<W2 , q*)&y(xz, q4)#8(Xi, A 

where a, /?, 7, S are certain of the numbers 0, 1, 2, 3. Again, 
the sums involving accented letters in the trigonometric forms 
of F - I V ' and the right of V' are likewise seen to be the 
coefficients of the same powers of q collected from four such 
theta products, taken with appropriate signs, in which the 
variables are x/ = s — Xi, where 2$ = Xi + x2 + #3 + #4. 
In this way we find F -V ' in their trigonometric cases to imply 
eleven theta identities, which, as they are easily accessible in 
H. J. S. Smith's second paper on the multiplication formula 
of four theta functions (Papers, volume 2, page 279), we need 
not transcribe. I t will be sufficient to state the particular 
formulas of Smith which the trigonometric forms of F -V ' 
thus imply. The results in I ' give Smith's (i) =h (ii),(iii) 
± (iv), and therefore (i) — (iv) in his set A. Similarly his 
B, C are implied by our I I ' , I I I ' ; his (ix), (xi) of D by our IV', 
and his (x) by our V'. From these eleven independent theta 
formulas, the theory of the theta and elliptic functions, as is 
well known, follows readily; in fact Smith so derives the theory 
in his " Memoir on the theta and omega functions " (Papers, 
volume 2, page 415). The analogous derivation by Jacobi 
in a famous memoir (Werke, volume 1, page 499) differs only 
in details. His set (A) is the equivalent of Smith's A-D. 
We have followed Smith's development rather than Jacobi's 
because it is the more symmetrical. Jacobi's gives another 
geometrical image of the theory, and Kronecker's well known 
exposition of Jacobi's methods yet a third, in which the simpler 
regular solids inscribed in S play an interesting part. 

Now conversely F-V' , and therefore I-V are implied by the 
eleven theta formulas of Smith. This follows immediately 
from the method of paraphrase* outlined in this BULLETIN, 
volume 26, page 220, § 13. Hence I-V imply, and are implied 
by, the theory of the elliptic theta functions; viz., the two 
are formally equivalent. 

*The proofs of the method are given in "Arithmetical paraphrases," 
Part I, to appear shortly in the Transactions 
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5. There is an analogous image for the theory of the theta 
functions of r variables. In it the lattice space is of 2r(r + 1) 
dimensions, and the appropriate configurations lie on a system 
of r four-dimensional spheres immersed in the higher space. 
For r > 1 the image is not expressible in terms of reflexions 
alone. 

THE UNIVEESITY OF WASHINGTON. 

NOTE ON THE MEDIAN OF A SET OF NUMBERS. 

BY PROFESSOR DUNHAM JACKSON. 

(Read before the American Mathematical Society September 7, 1920.) 

LET be a set of real numbers, which may or 
may not be all distinct. Let 

n 

S2(x) = J2 (x — cii)2. 

The value of x which reduces $20*0 to a minimum is the 
arithmetical mean of the numbers «i, • • •, an. If the condition 
that S2(a0 be a minimum is replaced by the condition that 

n 

be reduced to a minimum, the median of the a's is obtained. 
It is uniquely defined whenever n is odd; if the numbers ai 
are arranged in order of magnitude, so that 

a\ ^ a2 ^ • • • ^ an, 

and if n = 2k — 1, the median is simply a^ the middle one 
of the a's. The median is uniquely defined also when n is 
even, n = 2k, if it happens that ah = a^+i, being then equal 
to this common value. Otherwise, the definition is satisfied 
by any number x belonging to the interval 

ak Sx S ak+h 
and the median is to this extent indeterminate. 

The purpose of the following paragraphs is to show that 


