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We are now in a position to take up the proof of Theorem III. 
Clearly <p(u/v, u/v) is equal to J^iu, ff)/K^(u, v). Let u and 
v be two numbers such that J^{u, v) and K^iu, v) are prime 
to one another. By lemma 1, such numbers exist. Then to 
say that 

J+(u, v)lK^{u9 v) ss u/v (mod pk) 

is equivalent to saying 

L<i>(u, v) s 0 (modpfc), 

or that pk is a factor of L^(u9 v). If <p is iteratively equivalent 
to \f/, clearly we must have 

L^{u, v) ss 0 (mod pk). 

That is, every prime power that divides L+ must also divide 
Zty, or in other words, L^ is a factor of L^ for a particular 
set of values of u and v. However, since by Theorem I the 
equations L+{u, 1) = 0 and L^(u, 1) = 0 have the same 
three distinct roots, L$ is a constant multiple of Lé. Hence 
L^ is always a factor of 1^. Likewise, Z^ is always a factor 
of Z^. Hence, apart from a possible difference of sign, L^ 
and Ity are identical. This proves Theorem III. 
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NECESSARY AND SUFFICIENT CONDITIONS THAT 
A LINEAR TRANSFORMATION BE 

COMPLETELY CONTINUOUS. 

BY PROFESSOR CHARLES ALBERT FISCHER. 

(Read before the American Mathematical Society December 31, 1919.) 

A LARGE part of the Fredholm theory of integral equations 
has been derived for the equation 

A(a»=/(*) + Xim 
where T(J) is a completely continuous linear transformation.* 
It has also been proved that every linear transformation, that 

* F. Riesz, Acta Mathematica, vol. 41 (1918), pp. 71-98. 
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is, linear functional depending on a parameter, is equal to a 
Stieltjes integral of the form* 

(1) 27(/)= Çf{y)dyK(x,y). 

In a former paperf I have found a necessary and some suf­
ficient conditions that a linear transformation be completely 
continuous, and thus proved that this part of the Fredholm 
theory applies to Stieltjes integral equations of certain types. 
In the present paper will be found conditions which are both 
necessary and sufficient. The Volterra theory of Stieltjes 
integral equations has been discussed by Evans in his Cam­
bridge Colloquium Lectures, 1916. 

§ 1. Preliminary Theorems. 
A set of functions is said to be compact if every infinite 

sequence of them contains an infinite subsequence which is 
uniformly convergent, and a transformation is completely 
continuous if it changes every bounded set of functions into a 
compact set. 

The class {j(y)~] will be composed of all functions defined 
on the interval (a, 6) which can be approached by monotone 
sequences, beginning with the class of all continuous functions. 
The definition of the Stieltjes integral has been extended by 
Young J to apply to such functions. 

The function K(x, y) will be assumed to satisfy the equation 

(2) K(x, y) = K(x, y + 0). 

This will not affect the value of the integral (1), and when 
this equation is satisfied, VyK(x, y), that is, the variation 
of K considered as a function of y, is the least upper bound 
of Ï7(ƒ)/max |ƒ | .§ It follows that if VyK(x, y) is not bounded 
uniformly in x, the transformation (1) cannot be completely 
continuous, because in that case there would be a bounded 
set of ƒ s for which the set {_T(ff} would not be bounded and 
therefore could not be compact. 

* F. Riesz, Annales Scientifiques de VEcole Normale, ser. 3, vol. 31 (1914) t 
pp. 9-14. 

fThis BULLETIN, vol. 25 (1919), p. 447. 
t Young, Proc. London Math. Society, vol. 13 (1914), p. 109, or Daniell, 

Annals of Mathematics,• vol. 19 (1918), p. 279. 
§Riesz, loc. cit., Annales; or Fischer, Annals of Mathematics, vol. 19 

(1917), pp. 38-40. 
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It will now be proved that when VyK is bounded uniformly, 
every sequence of x's must contain a subsequence for which 
K(xn, y) approaches a uniquely determined function of y 
when n becomes infinite. 

The positive constants e\, e2, • • • will be chosen so as to 
approach zero as a limit, and it will be assumed that VyK 
< M. If there were a sequence of x's no subset of which 
would make the limit of K(xn, y) unique, there would be no 
subset which would make the difference between the largest 
and smallest limit points of K(xn, y) less than or equal to €1 
uniformly in y, or else there would be such a subset which 
will be designated as #i(1), #2

(1), • • •• Then there would be 
no subset of the xa)'s which would make the same difference 
less than e2 uniformly, or else there would be such a subse­
quence, #i(2), #2

(2), • • •. It would not be possible to proceed 
in this way and get an infinite number of sequences, xi(i), 
#2(i), •••, each a subset of the proceeding, and such that 
the difference between the largest and smallest limit points 
of K(xn

(i), y) would always be less than e», because if this 
could be done the limit of K(xn

{n), y) would be unique. Con­
sequently there would have to be a subset of the original x's, 
xi, x2, • • •, and a k > 0, such that no subsequence of the 
x's could make the difference between the largest and smallest 
limit points of K(xn, y) less than or equal to k uniformly in y. 

When a bounded set of functions is given there is always a 
subset of them that converges at any previously given denum-
erable set of points.* It follows that there would be a non-
denumerable set of values of y for which the difference between 
limit points of K(xn, y) would be greater than k, for a given 
sequence of the x's, since if there were only a denumerable 
set of such y's, the subset of the x's which made the above 
limit unique for these y's would make the difference between 
limit points of K{xn, y) less than or equal to k for all values 
of y. 

A subset of the x's could be taken such that K(xn, y) would 
converge at a dense set of y's, and the other x's dropped. 
Then if y% were a point where two of its limit points differed 
by more than k, there would be two x's which would make K 
differ by more than k at y\, while they made it differ by an 
arbitrarily small amount at a point arbitrarily near to y\, 
and consequently VyK would be greater than k/2 in the neigh-

* Riesz, loc. cit., Acta, p. 93. 
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borhood of y\ for at least one of these values of x. To state 
this more definitely, if a sequence Si, Ô2, • • • , were given, 
approaching zero, there would be a sequence of x's which 
would satisfy the inequalities 

VyK(xn, y) l* + ô;>l (»- i ,2 , . . . ) . 
yx — an I 

The other x's could then be dropped. Similarly there would 
be a 2/2 and a subset of the remaining x's which would have 
the same property with respect to 2/2, and the other x's could 
again be dropped. Proceeding in this way, the points y\, y2, 
• • •, yN (N > 2M/k) and a sequence of x's would be deter­
mined which would satisfy the inequalities 

VyK(xn, y) yi+ dn k / . 1 « . . . w) 

If n were then taken so large that the intervals (yi — dn 

yi + ôn) did not overlap, the inequalities 

VyK(xn, y) ^ Z) VyK(xn, y) 
yt+it>^>M, 
yi— h 2 

would be satisfied. But this is contrary to the hypothesis 
that VyK < M. 

This completes the proof of the theorem : If VyK is bounded 
uniformly in x, when a denumerable set of the x's is given, there 
must be a subsequence of them which makes K(xn, y) approach a 
unique limit as n becomes infinite. 

I t will now be proved that if a set of functions converges, 
the variation of the limiting function cannot be greater than 
the limit of the variations of any sequence of the given 
functions. 

If this were not the case there would be a sequence <pi(y), 
<P2(y), • • •, approaching a function <p(y), and a k > 0, which 
would satisfy the inequalities 

V<p{y)> V<pn(y) + k ( n = 1,2, . . . ) . 

Then there would have to be a finite set of points y0 = a 
< 2/1 < 2/2 < • • • < VN — b, which would satisfy the in­
equalities 

(3) Ë W(yi+i) - <p(y<) I > VMy) + 5 (n = 1,2,.. •). 
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But if n is large enough the inequalities 

h 
\<pn(yù - <p(yù I < 4JY (i = 0 ,1 , 2, • • -, N), 

would be satisfied, and consequently inequality (3) would 
imply that 

N-l 

X) \<Pn(yi+l) — <Pn(yi)\ > V<pn(y), 

which is absurd. 

§ 2. Necessary and Sufficient Conditions. 
The following condition, which will be called condition A, 

will be proved to be necessary. Then a second condition, 
which will be called condition B, will be proved to be suf­
ficient, and finally the two conditions will be proved to be 
equivalent. 

CONDITION A. A necessary and sufficient condition that the 
transformation (1) be completely continuous is that VyK(x, y) 
shall be bounded uniformly, and that when a sequence of x's is 
chosen in such a way that K(xn, y) converges, the equation 

(4) limit Vy[K(xn, y) — limit K(xn, y)} = 0 
w=oo n=oo 

shall be satisfied. 
If this condition is not satisfied there must be a sequence 

of x's for which K(xn, y) converges, and a k > 0, which 
satisfy the inequalities 

(5) Vy[K{xn, y) — limit K(xn, y)2 > h. 

If the functions K{xn, y) — limit K(xn, y) should also satisfy 
H=O0 

equations such as (2), there would be continuous functions 
fi(y), fz(y), • • •, not greater than 1 in absolute value, which 
would satisfy the inequalities 

b 

fm{y)dy[K{xm, y) - limit K(xn, #)] > h 

(m= 1,2, . . . ) • 

Since this is not necessarily the case, it will be proved instead 
that when xm is given there must be an m' ^ m, and a con-
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tinuous fm(y), such that \fm\ ^ 1, and 

X
6 k 

fm(y)dy[K(xm,, y) — limit K(xny y)~\ > -. 
It follows from the last theorem in § 1, that when inequalities 
(5) are satisfied, when m is given there must be an n > m 
which satisfies the inequality 

Vv[K(xm, y) — K(xn, y)l > k. 

Consequently there must be an fm(y) which satisfies the 
inequality 

I fm(y)dy[K(xm, y) - K(xn, y)2 > k, 

and at least one of the points xm and xn can be used for xmr, in 
inequality (6). 

The equation 

I f{y)dyK(xn, y) = I f(y)dy limit K(xny y) 
a va 

must be satisfied if f(y) is continuous.* Then when fm(y) is 
given there must be a finite N such that 

•%b 

I fm(y)dy[K(xn, y) - limit K{xn, y)2 <\ (n^N). 

It will then be possible to select a sequence £i, £2, • • • from 
the given x's, and a sequence of continuous f s, which satisfy 
the inequalities, |ƒ»• | ^ 1, and 

1/ k 
<6 fi(y)dy[K(£j, y) - limit if(>w, ?/)] 

(* = 1,2, . . . ; j = i + l , i + 2 , • - . ) , 
and 

fj(y)dy[K(%h y) - limit Z(zn, y)2 > f 2 

( i = 1,2, •••)• 

* This follows from the proof of Bray's Theorem 3, Annals of Mathe­
matics, ser. 2, vol. 20, pp. 180-181. 
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This implies that either 

| £UM - midym, y)\>\(l-l) = l> 
or else 

J' fb I k 

1 lfj(y) ~ fi(y)ldy Hmit K(xn, y) > T . 
In either case there must be some value of x for which 

\T(fj)-T(fi)\>l 

( i= 1,2, ••; j = i+l,i + 2, . . . ) , 

and the transformation cannot be completely continuous. 
Therefore condition A is necessary. 

CONDITION B. A necessary and sufficient condition that the 
transformation (1) be completely continuous, is that when an 
e > 0 is chosen there must be a finite number of points £i, £2, 
• • •, %n, such that to every x in (a, b) there corresponds a & which 
satisfies the inequality 

(7) Vy[K{x, y) - K&, y)] < e. 

If this condition is satisfied, and a decreasing sequence 
ti, e2, • • • is taken approaching zero, the £'s corresponding to 
all the e's can be arranged in one denumerable sequence. 
Every bounded set of f s must have a subset such that the 
functions 

9n(x) = T{fn) = f fn{y)dyK{x, y) (n = 1, 2, •. •), 

will converge at the denumerable set of points £1, £2, 
This subset will now be proved uniformly convergent on the 
whole interval (a, b). 

If an e > 0 is chosen there must be a finite JV such that to 
every x on (a, b) there will correspond a &, (i ^ iV), which 
satisfies inequality (7). Then if Nf is so large that the in­
equalities 

\gn($i) - limit gn{Si) | < e (i ^ N; n ^ # ' ) , 
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are satisfied, the inequalities 

\gn(x) - £„(&) | S niax|/| -Vy[K(x, y) - J£(&, #)] 

(n = 1, 2, . . . ) , 
and inequality (7) will imply that 

I?n(a0 — gn+m(x)\ £ 2[max|/| + l]e 

(n 'ZN'; m = 1,2, •••)• 

Consequently these g's must be uniformly convergent, and 
the transformation must be completely continuous. 

If condition B is not satisfied there must be an e > 0 and 
an infinite sequence of x's such that 

Vy[K(xm, y) ~ K(xn, y)2 ^ € (m + n). 

It follows from the principal theorem of the first section, 
that if VyK is bounded uniformly, a subset of these x's must 
make K(xn, y) convergent. As no subset of them can satisfy 
equation (4), condition A cannot be satisfied. Therefore 
when A is satisfied B must be, and since A is necessary and B 
sufficient, B must be necessary and A sufficient also. 

TRINITY COLLEGE, 
HARTFORD, CONN. 

ON THE RELATION OF THE ROOTS AND POLES 
OF A RATIONAL FUNCTION TO THE 

ROOTS OF ITS DERIVATIVE. 

BY MR. BEN-ZION LINFIELD. 

(Read before the American Mathematical Society December 30, 1919.) 

1. F. Lucas, Journal de VEcole polytechnique, 1879, gave a 
mechanical proof of the following theorem: 

The roots of the derivative of a cubic are the foci of the maximum 
ellipse inscribed in the triangle whose vertices are the roots of the 
cubic. 

Professor Maxime Bôcher gave a simple proof of this 
theorem, Annals of Mathematics, volume 7, page 70, 1892. 
Here he made observations on the general theorem concerning 
the polynomial of nth. degree and asked the question, " Could 


