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ROTATING CYLINDERS AND RECTILINEAR 
VORTICES. 

BY PROFESSOR H. BATEMAN. 

§ 1. Rectilinear Vortex and Rotating Cylinder in a Stream of 
Incompressible Fluid, 

W E shall assume that the rotation of the cylinder produces 
a circulation around the cylinder which may be approximately 
represented by placing a rectilinear vortex along the axis of 
the cylinder, a device which was adopted by Lord Rayleigh* 
in his paper "On the irregular flight of a tennis ball." Let 
V be the velocity of the stream, 2wk the circulation around the 
cylinder and 2wc the strength of the rectilinear vortex at the 
side of the cylinder. Assuming that the axis of this vortex 
is parallel to the axis of the cylinder, the motion is two-
dimensional and we may represent the velocity potential <ƒ> 
and stream line function \{/ as follows: 

<t> + ixf/ = UI z + - )+ ik log z + ic l o g ^ 3 — , 

where a is the radius of the cylinder, z = x + iy is a complex 
variable specifying the position of a point relative to the axis 
of the cylinder, z0 specifies the position of the vortex, and z\ 
that of its image. 

Let (u, v) be the component velocities of the fluid at (x, y), 
(uo, vo) the component velocities of the vortex; then differen­
tiating the above equation with regard to z we find that 

u \ zl ) z \_z— ZQ z — ziJ 

In calculating (UQ, V0) we ignore the infinite velocity produced 
by the vortex itself, consequently 

TTf 1 a2\ .ik . 1 
Uo — IVQ = U [ 1 0 I H %c . 

\ Zo2/ Zo Zo—Z! 
* Mess, of Math. (1878); Scientific Papers, vol. 1, p. 344. See also 

Lamb's Hydrodynamics, 4th éd., 1916, p. 77; Greenhill, Mess, of 
Math., vol. 9 (1880), p. 113. Report on Gyroscopic Theory, Report of 
the Advisory Committee for Aeronautics, No. 146, p. 238. 
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Let us wri te 
a2 

zo = r,eie«, f o = ne-ie«, zx = ~ e+id»; 
then since 

we find that 

dt 

Tt = u « ~ Wo> 

U f 1 2 J COS 0o, 

d6(i il I i i a2 \ • a k i cr° 
dt \ r0

2 J r0 r0
2 

In order that the vortex may be stationary we must have 
either U = 0 or cos 0o = 0. The former case has been dis­
cussed by Greenhill* both for a stationary and moving vortex. 
In the latter case U, k, c, and r0 must be connected by the 
equation 

( 1) T C / ( 1 + ^ 2 ) _ ^ + ^ _ 2 = 0 . 
\ ro / r0 r0

2 — a2 

To study the stability of this stationary vortex let R, 0 
denote small displacements from the stationary position; then 

dR _ 
dt ~ 

de 
r°~dt = 

dm 
• dt2 ~ 

=F ue 0 
a2 

± 2UR—, 
r<? 

• * u { 
( 

a2\ 
' 

-\—« R — cR -j—^ 
To2 Oo2 

•5)1 > < < • 

+ a2 

- a 2 ) 2 

c(ro2 + 
roW — 

a2) 
a2)2 

When the upper sign is taken [do = + (T/2)], the vortex is 
in stable equilibrium if 

n ie o ( v n I ft i 
(2) Wnz + n 2 > i n 2 - a2)2' 
The velocity at the surface of the cylinder is determined from 
the formula 

* Encyclopedia Britannica. Article on "Hydrodynamics." The pres­
ent case may possibly also have been discussed by Greenhill in a paper, 
Quart. J. Math., vol. 15 (1878), which is at present inaccessible to me. 



3 6 0 ROTATING CYLINDERS AND VORTICES. [ M a y , 

[ h o a2 — r<? ~l2 

2Usin 0+ - + - i - ^ //» /» N . 2 • a a a2—2ar0 cos (0 — 0O) + ro J 
The component forces (X, Y) on the cylinder are given by 
the formula 

X27T Z.2» ^ 

(^2 + v2)ae~l6de + p J -^ae~ied6. 
Expanding ^2 + A2 by Fourier's theorem, we find that the 
terms involving cos 0 and sin 0 are 

If O IcO 
4 t 7 - s i n 0 - 4 Z 7 - s i n 0 - 4 — cos (0 - 0O) 

a a ar0 

, A^ca . /n nn N , , c2r0 cos (0 — 0O) 
+ 4Î7—sin 0 - 20o) + 4 - V - y ^ - JC —; 

hence the value of the first integral is 

X — %Y = — 2irpi[Uk — C(UQ — Wo)]« 

On the other hand we have for r = a 

^ J_ ' ^ — ' U° ~^~ ^ ° J- * Ul "~̂~ *Vl 

' '*' 57" ~~ ~~ ï c •*/>*# « , , ^ 0 ' %c „jo 

r <**** _ n r27r « « ^ = _ 9 ^ „-««, 
J 0 aeiö - r ^ ~~ ' Jo ««" - W*0 V > 

•2/*.„W*o %)e 
^ 0 = 0 ^ 

J 0 ae»-(a*lro)e»°~ ' J0 aeie - (a 

r2n • a2 

I a (0 + i^) cos 0d0 = iric —2 (u0 + ivo)e~2l0° + wic(ui + ivi), 
Jo ro 

£ 2n a2 

a(d> + id/) sin 0d0 = — wc —« (i/o + ivo)e~2ie° + irc(ui + ivi), 

' XT- a cos 0d0 = ire - 2 (wo sin 20o — vQ cos 20o) 
o ut TQ 

— TCVi = — 2TCVI, 

J
^2TT QÇL a2 

ir-- a sin 0^0 = — ire —« (w0 cos 20o + ^o sin 20o) 
o dt To2 

+ 7TCWI = 2ircui. 
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Hence we finally obtain the formulas 

X = 27rpc(vo — vi), Y = 2wp(Uk — CUQ + cui). 

For a stationary vortex X = 0, Y = 2wpUJc and the trans­
verse force is the same as in Rayleigh's case when c = 0 
and there is no vortex.* 

For a stationary vortex (1) and (2) give the inequality 

_ TT >> 2ca2r°S 
U > W - a2)3 ; 

hence if U is positive and 0O = irj2, C must be negative and & 
negative. This means that the circulations around the vortex 
and cylinder are both in the counterclockwise direction and 
that the force 2'wpJJh is negative. Hence this force tends to 
move the cylinder away from the region where the cylinder 
and stream of air are moving in opposite directions. This 
phenomenon attracted the attention of Newton in 1671 and 
was the subject of some experiments by Magnus in 1852. 
Many other experiments have been made since this time 
and in his beautiful lecture onf "The dynamics of a golf ball" 
Sir Joseph Thomson showed with the aid of a pressure gauge 
that there is indeed a difference of pressure on the two sides 
of a golf ball rotating in a stream of air and remarked that 
when a golf ball is in flight this difference in pressure may 
provide a lifting force greater than the weight of the ball, 
so that a rotating golf ball is a kind of flying machine. This 

* In this case the formula gives Rayleigh's law that the transverse 
force is proportional to the velocity of the stream relative to the cylinder 
and the velocity of spin. In the case of a ball this product must be multi­
plied by the sine of the angle between the direction of motion of the ball 
relative to the air and the axis of spin. Rayleigh's law was adopted by 
P. G. Tait (Nature, June 29, 1893; Papers, vol. 2, p. 386) in his mathe­
matical calculation of the trajectories of a golf ball and by Sir J. J. Thomson 
in his experimental method (Nature, Dec. 22, 1910) of imitating these 
trajectories by means of the path of an electron in superposed electric 
and magnetic fields. A slightly different law is adopted by Appell (Journ. 
de Physique, vol. 7 (1917), p. 5) in his analysis of Carrière's experiments, 
ibid., vol. 5 (1916), p. 175. The formula has been established for a cylin­
drical surface of arbitrary shape in a stream of fluid on the assumption 
that there is a circulation round the cylinder. This is the basis of the 
theory of sustentation developed by Kutta, Joukowsky and others (see 
Joukowsky, Aérodynamique, Paris, 1916, and a paper by R. Jones, Proc. 
Roy. Soc. London, vol. 92, A (1916), p. 107) and of the theory of propeller 
action which has been developed by R. Grammel (Jahrb. d. Schiffsbau-
technik, vol. 17 (1916), p. 367). 

t Royal Institution, March 18 (1910); Nature, Dec. 22 (1910). 
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effect of rotation has been used to increase the range of 
spherical projectiles and in his experiments with golf balls* 
Tait conclusively proved that the great factor in long driving 
was the underspin communicated to the ball by the impact 
of the club. 

Lafayf has recently determined the way in which the pres­
sure varies over the surface of a cylinder rotating rapidly in 
a stream of air and finds that when the transverse force is in 
the direction indicated by Magnus it is produced chiefly 
by the suction on the side which is moving in the same 
direction as the stream of air. J The analogy with the wing 
of an aeroplane is thus complete. 

The distribution of pressure is important, for it should 
indicate whether or not a rotating cylinder carries along with 
it one or more vortices that do not produce any circulation 
around the cylinder. 

Lafay's results for a speed of rotation of 9,450 revolutions 
per minute and a velocity of the air stream of 19 meters per 
second are given below (p) and compared with the correspond­
ing results for the case of no rotation (p0). The pressures 
are in millimeters of water and represent deviations from the 
atmospheric pressure. 

e 
V 
Po 

e 
V 
Po 

0 
-18 
-10 

- 0 
-18 
-10 

15 
-16 
-10 

105 
3 

- 21 

-15 
-23 
-10 

-105 
- 85 
- 20 

30 
-12 
-10 

120 
8 

- 21 

-30 
-32 
-10 

-120 
- 63 
- 21 

45 60 
- 9 - 8 -
-10 -11 -

135 150 
14 20 

- 13 7 

-45 -60 -
-63 -93 -
-11 -12 -

-135 -150 
- 37 - 14 
- 13 7 

75 
5 -
13 -

165 
22 
20 

75 -
102 -
14 -

-165 
7 
19 

90 
2 
17 

180 
18 
23 

90 
104 
17 

-180 
18 
23 

* Badminton Magazine, March (1896). 
t Comptes Rendus, vol. 153 (1911), p. 1472. 
% The experiments and remarks made by W. S. Franklin, J own. Franklin 

Inst., vol. 177 (1914), p. 23, are of some interest in this connection. 
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To compare these results with formula (3), we must take into 
account the fact that the theory gives no drag X when h = 0 
and c = 0. It seems reasonable to suppose, however, by 
analogy with (3) that the correct formula is of type 

u2 + v2 = y(0) + -+~ a2Z. 2ar;cosW^^+^\ > 

where ƒ(#) is some function which gives the distribution of 
velocity in the case when there is no rotation of the cylinder. 
Now if c were zero the above formula would indicate that 
VP — p should differ from VP — p0 by a constant proportional 
to hja, where P is some constant. This means that 

(P — Vo)2 + MP + Vo) 
should be constant where X is some constant. This, however, 
is far from the case as may be seen from some of the values 
of (p — po)2 and p + Vo 

(p - po)2 64 36 4 1 9 8100 441 25 
p + po - 2 8 - 2 6 - 2 2 - 2 1 - 2 9 -118 - 7 41 

It seems reasonable then to assume that the flow is modified 
by the presence of one or more vortices and if we wish to try 
to account for the drag on the cylinder with the aid of these 
vortices it is necessary to assume that they are in motion 
relative to the cylinder just as in Karman's theory of resistance. 

It should be noticed that the region of low pressure in 
Lafay's experiment occurs in the neighborhood of 0 = — 90°, 
and so is directly opposite to the region where a vortex can 
remain in stable equilibrium. Hence if a vortex forms in 
the region of low pressure* it cannot remain stationary. 

If c is negative and u0 positive so that the vortex is carried 
away by the stream, Y may be decreased in magnitude and 
may even be positive instead of negative. A vortex with 
counterclockwise rotation may perhaps form when U is 
greater than the circumferential velocity of the rotating 
cylinder. As before, we suppose that the rotation of the 

* Lord Kelvin pointed out that if the velocity of a spherical solid moving 
through a fluid exceeds a certain value the pressure becomes negative 
when calculated by the ordinary theory and so cavitation must commence 
at the back of the sphere; coreless vortices will be formed periodically and 
shed off behind the sphere during its motion through the fluid. Phil. 
Mag., vol. 23 (1887). 
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cylinder is counterclockwise. If on the other hand c is posi­
tive and u0 positive our formula shows that Y is negative and 
numerically greater than in the case when there is no vortex. 
A vortex with clockwise rotation may, perhaps, form in the 
neighborhood of d = — 90° when the circumferential velocity of 
the rotating cylinder is greater than the velocity of the stream. 

To account for the force on the cylinder in the direction of 
the axis of x it is necessary to suppose that a vortex with 
counterclockwise rotation moves away from this axis and 
that a vortex with clockwise rotation moves towards this axis. 

I t should be mentioned that Lafay has found* that the 
direction of the transverse force in the Magnus experiment 
could be reversed. Experimenting with a smooth aluminum 
cylinder 35 cm. long and 10 cm. in diameter, he found that 
if the velocity of the air stream were kept constant at 18 or 19 
meters per second and the velocity of rotation gradually 
increased, the direction of the force on the cylinder first 
swung to one side of the air stream, attained a maximum 
inclination to it of about 11°, then swung to the other side, 
attained a maximum inclination of about 57°, and finally 
appeared to approach asymptotically to a direction making 
an angle of 45° with the air stream. 

The maximum inverse effect occurred when the cylinder 
was rotating at a speed of 1570 turns per minute giving a 
circumferential velocity of about 8.22 meters per second which 
is less than the velocity of the air stream. On the other hand 
the direct effect was quite marked when the speed of rotation 
was 9450 turns per minute, in which case the circumferential 
velocity is in the neighborhood of 50 meters per second and 
is greater than the velocity of the air stream. This is exactly 
in accordance with the above view that the transverse force 
is modified by the production of vortices in the neighborhood 
of the region 6 = — 90° and that the direction of rotation in 
the vortices depends upon whether the circumferential velocity 
is greater or less than that of the stream of air. 

I t is well known that the drift of a projectile fired from a 
rifled gun is exactly opposite to the direction of the transverse 
force which is indicated by the normal Magnus effect, but here 
we are dealing with a case in which the component velocity of 
translation of the bullet in a direction perpendicular to its axis 
is perhaps at some time greater than the circumferential 

^Comptes Rendus, vol. 151 (1910), p. 867; vol. 153 (1911), p. 1472. 
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velocity due to its spin and so the transverse force may be 
reversed as in Lafay's experiments. In Kârmân's theory of 
resistance* it is supposed that vortices with opposite senses 
of rotation are formed alternately behind a cylinder and move 
down the stream in two rows at a certain distance apart. 
These vortices occupy the region of the "wake" behind a 
cylinder in a stream of fluid. Now in Lanchester's theory of 
the Magnus effectf it is assumed that the wake behind the 
cylinder is displaced to one side on account of the rotation of 
the cylinder. If the vortices in this wake are produced some­
where in the neighborhood of 0 = — 90°, the displacement 
of the wake to one side would be accounted for by the previous 
remark that a vortex with counterclockwise rotation moves 
away from the axis of x and that a vortex with clockwise 
rotation moves towardsj the axis of x while it is carried down 
the stream.§ I t should be mentioned, however, that here we 
imagine the resistance of the cylinder to arise from the veloci­
ties of the vortices in a direction at right angles to the stream, 
while in Kârmân's theory the resistance arises from the 
momentum which is carried away from the cylinder whenever 
a fresh pair of vortices is formed. This momentum is calcu­
lated from the circulations around the vortices and the distance 
between the two rows, while the rate at which the vortices 
are formed is calculated from their final distance apart in a 
row and their final velocity relative to the cylinder which is 
now parallel to the axis of x. The difference between the two 
points of view is probably the same as the difference between 
the initial and final stages of an action; for, when the motion 
of the vortex perpendicular to the stream is considered, we 
are dealing with the actual transfer of momentum from the 
cylinder to the fluid or vice-versa. 

§ 2. Two Rectilinear Vortices and a Rotating Circular Cylinder 
in a Stream of Fluid. 

An interesting attempt to throw light on the initial stages of 
the formation of the two rows of vortices in the Kelvin-

* Phys. Zeitschr. (1912), Gött. Nachr. (1911). See also Joukowsky 
Aérodynamique, Paris (1916), Ch. 8; Lamb, Hydrodynamics, 4th ed. 
(1916), p. 219. 

f Aerodynamics, vol. I. 
t When vortices originate on opposite sides of the #-axis as in the case 

of no rotation they must both move away from the axis of x if they are 
to produce a positive x. 

§ If it crosses the axis of x it must then move away from it. 
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Karman theory of resistance has been made by L. Föppl* 
who has shown that when a cylinder is at rest in a stream of 
fluid two vortices which are images of one another in the axis 
of x can be in equilibrium in a stationary position behind the 
cylinder provided they lie on the curves 

db 2r2 sin2 6 = r2 — a2, 

Föppl found that the vortices are stable for symmetrical 
displacements but unstable for asymmetric displacements. 
The former result is of some meteorological interest in connec­
tion with the flow of air past a mountain or other obstacle 
which is shaped roughly like a half cylinder standing on a 
plane. I t is well known in fact that an eddy can form behind 
a mountain over which a wind is blowingf ; near the rock of 
Gibraltar the eddy motion is sometimes quite large. 

The second result is of interest because it indicates that if 
two vortices form in symmetrical positions behind a cylinder 
as they do behind a flat plate, they will be in unstable equilib­
rium for asymmetric displacements; consequently one vortex 
may be imagined to get ahead of the other and a new one to 
be formed to take its place, thus giving rise to an alternate 
formation as imagined by Lord Kelvin and Karman.J I t 
should be mentioned that in FöppFs analysis the strength of 
the vortices when in equilibrium increases with their distance 
from the cylinder while in Karman's analysis the strengths 
of all the vortices in one row are supposed to be the same 
and equal but opposite in sign to those of the vortices in the 
other parallel row. 

If ZQ = roeie° indicates the position of one of the vortices 
and c the strength, we have in FöppFs case 

-*0-$)V;D 
* München Sitzungsberichte (1913). 
f See, for instance, W. H. Dines, Report of the Advisory Committee 

for Aeronautics, No. 92, March (1913), W. N. Shaw, Science Progress, 
vol. 6, p. 345. 

J This alternate formation of two rows of vortices has been observed on 
many occasions. See for instance Osborne Reynolds, Phil. Trans., vol. 
174 (1883); Ahlborn, "Ueber den Mechanismus des hydrodynamischen 
Widerstandes," Hamburg (1902); Mallock, Proc. Roy. Soc, vol. 79 
(1907), p. 262; vol. 84 (1910), p. 490; Engineering, April 19 (1912); H. 
Bénard, Comptes Rendus, vol. 147 (1908), pp. 839, 970; vol. 156 (1913), 
p. 1003; vol. 157, pp. 7, 89, 171; Rayleigh, Phil. Mag., vol. 29 (1915), p. 
433. Joukowsky, loc. cit. 
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and the velocity at the surface of the cylinder is given by the 
formula 

u2 + v2 = | 2 ï 7 s i n 0 

4cro(r0
2 — a2) sin 0 sin 0p 

~ {r0
2+a2-2ar0 cos (0-0o)} {r0

2+a2-2ar0 cos (0+0o)} 

Since 2r0
2 sin 0O = r0

2 + a2 it appears that the velocity van­
ishes when 0 = 0, 0 — T and also when 

I / a2\ i 
cos 0 = 7T- I r0 H ) cos 0o V3r0

2 + 4a2 sin2 0O. 
Za \ To / o> 

This equation can give a real value of 0, for when r0
2 == 3a2, 

we have 
„ 4 V 6 - VÎ3 , 

cos 0 = Ö < !• 

When the surface velocity q is plotted as a function of 0, 
q and 0 being regarded as polar coordinates, a curve is ob­
tained which is shaped like a butterfly with two wings. The 
measurements of J. T. Morris,* A. Thurstonf and A. LafayJ 
indicate that for a cylinder in a stream of fluid the curve 
indicating the distribution of velocity should be shaped like a 
butterfly with only one pair of wings. The lack of agreement 
is to be expected on account of the instability of the two vor­
tices behind the cylinder. A comparison of the theoretical 
formula ought to be made with some measurements of the 
velocity over the surface of a semi-cylinder standing on a 
smooth plane surface over which a wind is blowing. Of 
course the roughness of a rotating ball or cylinder has a great 
influence on the magnitude of the transverse force exerted 
by the wind as is clearly shown in the experiments of Sir 
Ralph Payne-Gallwey,§ Sir Joseph Thomson and Command­
ant Lafay. Curiously enough the former found that to obtain 
the best lifting effect with a golf ball the ball must not be too 
rough. This suggests that with a very rough ball vortices 
are produced which modify the Magnus effect. 

* Engineering, Aug. 8, 1913. 
t Ibid., Aug. 21, 1914. 
j Loc. cit. 
§ The Times, March 16, 23, 1909. Nature, April 22, 1909. 

• 
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I t may be of interest to indicate briefly the extension of 
FöppFs analysis for the case in which the cylinder rotates and 
there is no symmetry about the axis of x. Using ZQ and z2 to 
indicate the positions of the vortices and Zi and 23 those of 
their images in the cylinder, the appropriate expressions for 
<j> and \p are given by 

ó-\-i\l/= TJ\ z-\— J +ik log z+ic log iclog . 
\ zj & & z—z\ z—Zs 

Differentiating to obtain the velocities we have 

u — iv V #) z [_z — Zo z — ZiJi 

_ . r_i i_] 
[_z — z2 z — zzj' 

rift a2\ ik 
V *o2/ s0 

. r 1 , 1 i n 

|_30 — 3l S0 — S2 S0 — S3 J 

|_S2 — S0 S2 — Si 22 — S3 J 

Writing 
so = roe*'0, z2 = r2^2 , # 2 = r0

2 + r2
2 - 2r0r2 cos (0O - 02), 

52 = ro2r22 + a4 _ 2a2r0r2 cos (0O - 02) 

we find that when u0 = vQ = u2 = v2 = 0, 
0 = ï j f l - ^ c o s 2 Ö o N ) + ( - - ^ C — - 2 ) s i n Ö o 

\ r0
2 ) \ r0 r0

2 - a2 / 
+ "öi fa sin02 — r0 sin 0O) + 02 far2 sin 0O — a2 sin 02), 

Ci I If PVn \ 

0 = U—« sin 20o + ( -?—"~o J cos 0O 

?V Vo r0
2 — a 2 / 
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C CV1) 
+ ^2 (ƒ2 COS 02 — T0 COS do) + Ö2~ ( W COS 0O — a2 COS W 

and two similar equations with the suffixes 0 and 2 inter­
changed and — c written in place of c. 

Multiplying the first of these equations by cos 0O, the second 
by sin 0O and subtracting, we get 

(ro2 — a2) —̂  cos 0O — W k O22 — a2) sin (0O — 02) = 0. 

Similarly 

O22 — a2) \y-2 cos 02 — - ^ 2 (f o2 — a2) sin (0O — 02) = 0, 

r «2i n ( «2\ 
r0 cos 0o = I 7*2 I cos 02. 

L f o j V r2J 
This equation tells us that the projection on the axis of x 
of the interval between a vortex and its image in the cylinder 
is the same in both cases. I t is clear then that the vortex 
which is furthest from the plane y = 0 is also furthest from 
the axis of the cylinder. There is another equation connecting 
To, 0o, r2y 02, but it is very complicated; the two equations 
show, however, that when orie vortex is given the position of 
the other is determined. The component forces on the cylin­
der are easily found by an extension of the analysis of § 1. 
They are 

X = 2xpc0o ~ «1 — 2̂ + Vz), 

Y = 2TP(U1C — CUQ + cui + cu<i — cu$). 

When both vortices are stationary we have X = 0, Y = 2wpUk 
as before. This result seems to be true for any number of 
stationary vortices outside a cylinder, as is probably well 
known.* 

We have seen that a rotation of the cylinder alters the 
possible stationary positions for a pair of vortices; it may also 
alter the period of formation of the vortices in Karman's 
theory of resistance. This is not easy to settle mathemat­
ically but the matter may perhaps be tested experimentally. 

Eiffel found during his measurements of the force exerted 
by a stream of air on a sphere that at a speed above twenty 

See for instance the remark in § 3 of FöppPs paper. 
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miles an hour the flow was smoother and the force more 
constant. The vortices behind the sphere are usually said 
to be flattened out* and presumably the period of formation 
which depends on the distance between the two rows of vortices 
is changed. The rate of formation probably increases with 
the velocity of the stream until the flow becomes practically 
steady at high speeds.f 

Now a rotation of the cylinder or sphere may cause a 
change in the critical velocity above which the flow is prac­
tically steady, consequently it may be worth while to deter­
mine this critical velocity for a given velocity of the stream 
and different velocities of rotation of the cylinder. This 
critical velocity may be closely connected with Lafay's 
critical velocity at which the sign of the transverse force in 
the Magnus effect is reversed; it should be noticed, however, 
that Laf ay made his experiments in a wind of 19 meters a 
second which had a velocity more than double Eiffel's critical 
velocity and noticed at which speed of rotation the change 
occurred. 

I t is known that at high speeds the periodic formation 
of vortices is responsible for the production of sound i and the 
period is presumably that of the sound. In the case of the 
aeolian harp§ the sound is most intense when the period is 
close to one of the natural periods of the stretched string or 
wire. An effect of rotation of the stretched string or wire on 
the pitch of the sound produced in a given type of wind 
might perhaps be determined experimentally but there would 
be difficulties. For the mathematical theory of the aeolian 
harp the sound produced by the oscillation of a vortex about 
a state of uniform motion ought also to be considered, for this 
may contribute to the observed sound as well as periodic 
formation of vortices, but the effect is probably negligible. 

§ 3. Vortices in a Compressible Fluid. 

I t was shown by Lord Kelvin that vortex lines in a com­
pressible fluid move with the fluid provided the density of 

* Cf. Loening, Military Aeroplanes, p. 51. 
t Cf. Cowley and Levy, Aeronautics in Theory-Experiment (1918), 

pp. 17-20. 
t See for instance Mallock, Proc. Roy. Soc. London, vol. 84 (1910), p. 490. 
§ Lord Rayleigh, Theory of Sound, vol. II, p. 412, vol. 1, p. 212; Phil. 

Mag., vol. 29 (1915), p. 433. 
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the fluid is a function of the pressure only and the body forces 
have a single-valued potential. I t is also true that the circula­
tion in any circuit moving with the fluid remains constant. 
An accurate theory of vortex motion in a compressible fluid is 
difficult. To make progress, it seems worth while to make an 
assumption which is nearly true except in the immediate 
neighborhood of a vortex. 

Let us consider a two-dimensional irrotational motion in 
which the velocity potential </> satisfies the wave equation 

d2^ , ô ^ _ 1_ dV 
dx2 + dy2 ~ c2 dt2 ' 

wherein c, the velocity of sound in the fluid, is supposed to be 
constant. The component velocities (u, v) will then satisfy 
the same equation. A solution appropriate for the repre­
sentation of a rectilinear vortex moving with constant com­
ponent velocities a, b may be derived from the well known 
solution for a stationary vortex by an application of the trans­
formations of the theory of relativity. The result is 

fie(y — bt) Vc2—a2—b2 

fxc(x—at) ^c2—a2—lP 

where 2-wix is the strength of the vortex.* 
To find the paths of the particles of fluid relative to the 

moving vortex, we write X = x — at, Y ~ y — bt, X2 + Y2 = z, 
bX — aY = w,u = dx/dt, v = dy/dt; then it is easy to see that 

1 <**_!_ v . ^ v n dwj_ c^c2~a2-b2(aX+bY) 
-Jt+aX+bY=0, Tt + » ~ ^ ^ = 0 , 

dz _ 2(c2a — w2) 

rfw_
McVc2- a?-b2' 

z — Ae2cw/ix}/^~a2~b2 

+ J5[W
2 + M™ A/ C

2 -a 2 -6 2 +^ 2 (a 2 - c2 - 62)] , 

where A is an arbitrary constant. 

* M is positive for counterclockwise rotation. 
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Thus relative to the moving vortex a particle of fluid 
appears to describe a curve whose equation is 

X2 + P = AeWx-aY)i^v#^ï=& -f - (ix - aY)2 

+ £ V ^ - ^ - ^ f c 2 (bX ~ aY)+£2 (c2 - a2 - b2) 1 . 

When 4̂ = — (/x2/c2)(c2 — a2 — 62), we obtain an equation 
which is satisfied by X = 0, Y = 0 and this represents a 
curve having an isolated point at the origin which is in 
accordance with the theorem that the vortex moves with the 
fluid. As A varies, we obtain first a number of ovals sur­
rounding the origin, then a curve which touches itself on the 
axis of y,* after completing the circuit, and then goes to 
infinity. Finally we obtain a series of curves which lie outside 
the last one and like it go to infinity. Each curve is described 
by a point which starts moving almost in the direction of the 
x-axis, then swings around the origin in the clockwise direction 
and finally returns to a state of motion very nearly parallel 
to the x-axis. 

Let us now consider two rectilinear vortices of strengths 
2irfx and — 2TJJL respectively moving parallel to the axis of x 
with constant velocity a and at a distance apart equal to 2y. 
If the velocity of each vortex is that produced by the other, 
we have simply 

jUC 

a = 

or 

a2 = \c2 

2y Vc2 — 

4f 
For a real value of a2 we must have c2y2 > jit2. Hence when the 
circulations around the vortices are given they cannot move 
parallel to one another at a distance apart less than 2/JL/C. 
If the two vortices are in a stream of fluid moving with 
velocity U the equation determining a is 

2y>lc2- a2 

* We put y = bX — aY, x — aX + bY to obtain a curve which is 
symmetrical with regard to the axis of y. 
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or 
4y2(c2- a2)(a- U)2 = y?c2 

I t should be noticed that a is numerically less than c whatever 
the value of U. 

The velocity potential of a vortex moving with constant 
velocity differs by a constant from the function 

fi tan x (ay — bx)y Ç1 ds 

^rMI„Trb5(w)' a(x — at) + b(y — bt) J_M V< — 
where 

/ a2+b2V'2 

v-K1--*-) 
and 
A(x, y, s) + iB(x, y, s) 

_ I" a2+b2 I1 '2 

[_a(x — as) + b(y — bs) — iy(ay — bx) J ' 

A{x, y, s) + iB(x, y, s) 

a2 + b2 l1'2 

[.-(x — as) + b(y — bs) — iy(ay — bx) J 

For a vortex which is moving with component velocities 
£(r), 77(r) at time r and is at an infinite distance from the 
origin at time r = — 00, the natural generalization of the 
function B(x, y, s) is obtained as follows: 

Let T be defined in terms of x, y, s by the equation 

[x - S(T)P + [y - v(r)f = c*(s - T)2 r ^ *, 

where £/2(r) + ?7/2(T) < c2 and primes denote differentiations 
with respect to r. Let 

KT) = * ' (T) + W(r), <?P{T) = r 2 + V'2, 

m(T) = V'(T) - W ^ ' ( T ) , C V = c2 - £'2 - v'2; 

then 

^(x , 2/, s) + iB(x, y, s) 

T ^p(r ) I1 '2 

~ L {x- €(T)}Z(T) + {2/ - ij(T)}m(T) - c2(s - T)P(T) J • 
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This result may be of interest for an analysis of the sound 
produced when a vortex oscillates about a state of uniform 
motion. It must be remembered, however, that the above 
analysis is only approximate, for velocities are treated as 
small in the derivation of the wave equation. 
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SHORTER NOTICES. 

Lectures on the Philosophy of Mathematics. By JAMES BYRNIE 
SHAW. Chicago, The Open Court Publishing Company, 
1918. viii + 206 pp. 
THE purpose of Professor Shaw's book is a discussion of the 

evergreen question: What is mathematics? While in his first 
chapter the author develops in a highly exalted style various 
aspects of this subject, the greater part of the subsequent 
chapters may be said to be essentially devoted to two more 
specific questions, viz., what influences operate and have 
operated in the development of mathematics, and how may 
existing mathematics be concisely described. With the treat­
ment of these questions, perhaps not always recognized as 
explicit and distinct, Chapters II to XIII are taken up, 
together occupying 140 pages. To the first question the 
author gives a positive answer, viz.: "Mathematics is a 
creation of the mind and is not due to the generalization of 
experiences or to their analysis; nor is it due to an innate 
form or mold which the mind compels experience to assume, 
but is the outcome of an evolution, the determining factors of 
which are the creative ability of the mind and the environ­
ment in which it finds the problems which it has to solve in 
some manner and to some degree." The second question is 
answered in a negative sense; as the various fields and prin­
ciples of mathematics are discussed, the conclusions are reached 
that mathematics is not wholly arithmetic, nor geometry, nor 
logistic; that mathematics can not be completely char­
acterized as a theory of invariance, nor as a theory of functions, 
etc., however important each of these principles may be. 
The closest approach to a satisfactory answer to our second 


