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For I = k it follows that 

ak-jt j + ibh-jt j = (iy(ak0 + ibko) (j = 1, • • -, h). 
Then 

00 

w(z) = X feo + ibko)(x + iy)k 

oo 

= 2 C&k, where (C& = a*0 + i&*o). 

This completes the theorem. 
I am indebted to Professor E. J. Townsend for suggesting 

the problem. 
OHIO UNIVERSITY, 

ATHENS, OHIO. 

CONCERNING THE COMPLEMENT OF A COUNT­
ABLE INFINITY OF POINT SETS OF A 

CERTAIN TYPE. 

BY DR. J. R. KLINE. 

(Read before the American Mathematical Society, December 27, 1916.) 

IN his "Grundzüge der Mengenlehre," Hausdorff proved 
that if E denotes a euclidean space of two or more dimensions 
while R is a countable set of points belonging to E, then E—R 
is a connected* point set.f It is the object of the present 
paper to prove a theorem, which contains HausdorfFs theorem 
as a special case. HausdorfFs method of proof does not apply 
for the proof of the more general theorem. While the proof 
is carried out for the case of two dimensions, it is evident that 
a similar proof would apply to any higher number of dimen­
sions. 

THEOREM. If M is a domaini and G\, G2, G3, • • • is a 
countable infinity of nowhere dense% closed point sets, no one of 

* A set of points is said to be connected if, however it be divided into 
two mutually exclusive proper subsets, one of them contains a limit point 
of the other. 

t Cf. F. Hausdorff, "Grundzüge der Mengenlehre," Leipzig, Veit, 
1914, p. 333. 

% A domain is a connected set of points M, such that if P is a point of 
My then there exists a region containing P and lying in M, 

§ A set of points is said to be nowhere dense, if in every region Ri there 
exists a region R2 entirely free of points of the set. A set is said to be 
closed if it contains all its limit points. 
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which disconnects any domain, then M—{Gi + G2 + 6?3 + • • •) is 
connected. 

Proof.*—Let A and B denote any two distinct points of 
M — (Gi + G2+ • • -)-t The point set M — Gi is a domain. 
For each point P oi M — 6?i, let K\P denote a region, of sub­
script greater than or equal to 1, which belongs to the funda­
mental sequence^ and is such that K\P% is a subset of M—G\. 
Call the set of all such regions S\. There exists a simple chain|| 
JKii, Ri2, R\z, • • •; jRim from A to B every link of which is a 
region of the set Si. Call this chain C\. As two regions which 
have a point in common, also have in common a region con­
taining that point, and as G2 is a nowhere dense closed point 
set, it follows that Ru and Ru+i (i = 1, 2, • • -, n\ — 1) 
have in common a point Pu, not belonging to G2. Call A, 
Pio and B, Pini. For each point P of Ru (i = 1,2, 3, • • -, ni) 
which does not belong to G2, let i£2p denote a region of the 
set K2, Ks, • • •, which is such that K'2p lies in i?n and contains 
no point of G2. Call the set of all such regions S2. It is now 
possible to construct a simple chain C2, which satisfies all 
the requirements of Professor Moore's (72Tf and has the ad­
ditional property that every link of C2 belongs to S2 and there­
fore contains no points of G\ + G2. Continue this process. 
We obtain an infinite sequence of chains C\, C2, C3, • • • which 
satisfy all the requirements of Moore's sequence of chains 
Ci, C2, Cz> • • • and have the additional property that no link 
of the chain Cn has a point in common with the set Gi + G2 

* Our theorem is proved on the basis of the system of axioms Si proposed 
by R. L. Moore in his paper, "On the foundations of plane analysis situs," 
Transactions Amer. Math. Soc, vol. 17 (1916), pp. 131-164. 

t That M — (Gi + (r2 + Gz ^ ) contains infinitely many points 
follows at once from one of the theorems of Baire, Annali di Mat. (3), 
vol. 3, p. 65. 

% Select once for all a definite sequence, K\, i£2, • • • satisfying the con­
ditions of Axiom 1 of Si. This definite sequence will be called the funda­
mental sequence and its regions will be termed fundamental regions. 

§ The boundary of a point set M is the set of all limit points of M> 
which do not belong to M. If R is a region, R' denotes the point set com­
posed of R plus its boundary. 

|| If A and B are distinct points, then a simple chain from A to B is 
defined by R. L. Moore as a finite sequence of regions R\, R2, R3, • • •, Rn 
such that (1) Ri contains A if and only if i = 1, (2) Ri contains B if and 
only if i = n, (3) if 1 ^ i rg n and lrg j ^ n, while i < j , then Ri has a 
point in common with Rj if and only if j == i + 1. The region Rk 
(1 = k ru n) is said to be the &th link of the chain. See R. L. Moore, 
loc. cit., p. 134. For a proof of the existence of such a chain, see R. L. 
Moore, loc. cit., Theorem 10, p. 135. 

1f Cf. R. L. Moore, loc. cit., p. 137. 
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+ • • • + On. Let Cn denote the point set which is the sum of 
all the links of the chain Cn, while C denotes the set of all 
points that the sets Qi, C2, Cz, • • • have in common. The 
point set C is a simple continuous arc* from A to B, lying 
entirely in the set M - (6?i + G2 H ).f 

I t follows that M — (C?i + G2 + • • •) is connected. 
UNIVERSITY OP PENNSYLVANIA, 

PHILADELPHIA, P A . 

AN ANALOGUE TO PASCAL'S THEOREM. 

BY DR. A. L. MILLER. 

A DECAGON is said to be doubly inscribed in a cubic if every 
odd side of the decagon cuts three even sides on the cubic and 
and every even side cuts three odd sides on the cubic. 

That there exist decagons doubly inscribed in a cubic can 
be seen as follows. Let the decagon D have for sides sh s2, $z, 
• • -, $10 and let the cubic be (73. Let 

Si meet Si0, s2, s^ on Cz, 

Sz meet s2, s±, s6 on Cz, 

6*5 meet Si, s6, s$ on Cz, 

s7 meet s6, ss, Sio on Cz, 

while $9 is the line joining the third intersection of s% with 
Cz with the third intersection of #i0 with C3. Then, by Cayley'sf 
theorem, s$ also cuts s2 on (73. 

By a repetition of this last theorem we obtain the following 
theorem analogous to Pascal's theorem: 

If a decagon be doubly inscribed in a cubic the remaining 
ten intersections of the odd sides with the even ones lie on a 
conic. 

UNIVERSITY OF M I C H I G A N . 

* If A and B are distinct points, a simple continuous arc from A to B 
is defined by Lennes as a bounded, closed, connected set of points con­
taining A and B, but containing no proper connected subset containing 
both A and B. See N. J. Lennes, " Curves in non-metrical analysis situs 
with an application in the calculus of variations, " American Journal of 
Mathematics, vol. 33 (1911) and this BULLETIN, vol. 12 (1906), p. 284. 

t For a proof of this statement, see the proof of Theorem 15 of Moore's 
paper, loc. cit., pp. 136-9. 

t Cayley: Cambridge and Dublin Mathematical Journal, vol. 3. 


