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The system of groups under consideration is of special 
interest because it includes p — 2 non-abelian groups in which 
every operator except identity is of order p, for every 
possible value of the prime number p. The number of these 
groups for a particular prime number therefore depends upon 
this prime. The fact that the group generated by sh S2 is 
completely determined by its order seems also worth noting. 
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IN this paper the following theorem is proved: 
THEOREM: If the two real functions TJ(x, y)9 V(x, y) of the 

real variables x, y satisfy the following conditions at each point of 
a closed region R : 

(a) U and V continuous in x and y jointly; 

dU_ dU_ dV_ dV_ 

exist and are finite; 

(c) AU=hU1+kU2 + Pi(h,k), AV^hVi + kVt+pzikk); 

«) l ia- jg^M - 0 <i=l, 
A, *=o \h\ + \K\ 

(«) Ui = V2> U2=- Vu 

2); 

then U and V are analytic functions of x, y in R. 
An immediate consequence of the theorem is that if any 

function IT of a complex variable z possesses a finite deriva­
tive at each point of a simply connected closed region R then: 
1. This derivative is continuous. 
2. All the derivatives of W exist. 
3. The function W may be represented by a power series in z. 
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To prove the theorem we apply the following, due to 
Kowalewski:* 

If the two real functions U(x, y), V(x, y) are properly dif­
ferentiable (satisfy hypotheses c, d) and if 

Ui= V2 

at each point of a rectangle R, there exists a function U(x, y) 
such that __ _ 

Ui = U; U2 = V. 

The function U is, moreover, properly differentiable. 
Employing this theorem we may infer the existence of two 

functions (in view of both parts of hypotheses (e)) U, V such 
that 
(1) Ü! = U, Ü2=-V, ?!= V, V2 = U. 

From equations (1) 

(2) fj, = F 2 ; Ü2 = - VL 

Since U and V are properly differentiable we have by a second 
application of Kowalewski's theorem, two other functions, 
U, V, also properly differentiable and such that 

(3) Ü!= Ü; Ü2 = - V; Vi = V; V2 = Ü. 

The functions U(x, y), V(x, y), as well as their first and second 
partial derivatives, are easily seen to be continuous in the 
variables x, y and satisfy Laplace's differential equation 
AU = 0, since 

'dx2 = 

(4) 
d2U 
dy2 = 

(5) 

Similarly for V. 
The functions U, V are then analyticf functions of x, y. 

* Kowalewski, Die komplexen Verânderlichen und ihre Funktionen, 
p. 187. 

t Picard, Traité d'Analyse, tome 2 (2d éd.), p. 18. 

dx 

dU?l 

dy 

•*• 

• % - * - " • 

dV rr 
= _ = _ y _ 

dy 
d2U d2U 
dx2 + dy2 ~ ° 

= - u. 
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The functions TJ and V being contained among the deriv­
atives of U and V are also analytic functions of x, y. 

I t may now be seen that we have the following representation 
for these functions: 

00 

U(x, y) = S (oios + a0iy)k; 
7c=0 

(6) 
V ' CO 

V(x, y) = lL (bwx + b0iy)k; 
Jc=0 

((aiQ)l(a0i)
m = alm; (b10)

l(b0i)
m = hm; l, m = 0, • • -, k). 

Differentiating the equations 

u1 = v2, u2 = - v1 
I — 1 times with respect to x and k — / times with respect 
to y, at the point (0, 0) we have the following relations among 
the coefficients: 

(7) ait k-i = &z-i, k-i+i', bit k-i — •— CLi-i, fc-z+i (I = 1, • • 'y k). 

We may now prove that if a function W of a complex variable 
z possesses a finite derivative at each point of a simply con­
nected closed region, R, 
1. This derivative is continuous. 
2. All the derivatives of W exist. 
3. The function W may be represented as a power series in z. 

Since U and V are analytic functions of x and y, we see 
immediately from the representation 

W = U{x, y) + iV(x, y) 

that 1 and 2 are true. From equations (6) 
oo oo 

W= U(x, y)+iV(x, y)=J2 faioa + aoiy)k + iJ2 (&io& + bQiy)k 

00 7e /k\ 
= S S ( 7 J [aîf jb_i + *z, *-i]al • / " * . 

k=0 1=0 \ l / 

From equations (7) we have 

air-i, k-i+i + ibi-lt k-i+1 = i(ait k-i + ibi, k-i) (I = 1, • • • ,&) 

and in general 

ai-jt k-i+j + ibi-jt k-i+j = (i^'Oz, fc-z + *z, fc-z) ( j = 1, • • -, /) . 
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For I = k it follows that 

ak-jt j + ibh-jt j = (iy(ak0 + ibko) (j = 1, • • -, h). 
Then 

00 

w(z) = X feo + ibko)(x + iy)k 

oo 

= 2 C&k, where (C& = a*0 + i&*o). 

This completes the theorem. 
I am indebted to Professor E. J. Townsend for suggesting 

the problem. 
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IN his "Grundzüge der Mengenlehre," Hausdorff proved 
that if E denotes a euclidean space of two or more dimensions 
while R is a countable set of points belonging to E, then E—R 
is a connected* point set.f It is the object of the present 
paper to prove a theorem, which contains HausdorfFs theorem 
as a special case. HausdorfFs method of proof does not apply 
for the proof of the more general theorem. While the proof 
is carried out for the case of two dimensions, it is evident that 
a similar proof would apply to any higher number of dimen­
sions. 

THEOREM. If M is a domaini and G\, G2, G3, • • • is a 
countable infinity of nowhere dense% closed point sets, no one of 

* A set of points is said to be connected if, however it be divided into 
two mutually exclusive proper subsets, one of them contains a limit point 
of the other. 

t Cf. F. Hausdorff, "Grundzüge der Mengenlehre," Leipzig, Veit, 
1914, p. 333. 

% A domain is a connected set of points M, such that if P is a point of 
My then there exists a region containing P and lying in M, 

§ A set of points is said to be nowhere dense, if in every region Ri there 
exists a region R2 entirely free of points of the set. A set is said to be 
closed if it contains all its limit points. 


