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IN an address which I had the pleasure of giving at the 
Atlanta meeting of the American Association for the Advance­
ment of Science, I traced the influence of Fourier's series 
upon the development of mathematics. This instance is only 
one of many in which a central thought or problem has exerted 
a remarkable, sometimes even a controlling influence upon 
the development of mathematical thought. Prom early 
Greek times I may cite the historic problems of the duplica­
tion of the cube and the squaring of the circle. After the 
invention of analytic geometry it became essential to deter­
mine the tangent at a point of a given curve, and this led, as 
you know, to the discovery of the differential calculus, one 
of the most wonderful instruments ever devised for scientific 
thought. Almost simultaneously the problem of finding the 
area of a curve resulted in the construction of the definite 
integral, a concept even wider in scope than the differential 
coefficient. Still earlier, and near the beginning of the mathe­
matical renaissance, the problem afforded by the equation 
of the nth degree was brilliantly solved for equations of the 
third and fourth degrees, and the first creative impulse subse­
quent to Greek times was thereby given to mathematics. 
In the last half of the nineteenth century this same problem 

* This address was read at the Quarter Centennial of the University 
of Chicago before a conference of the mathematical, physical, and astro­
nomical departments. 
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eventuated in the theory of groups which has become the 
foundation of mathematical classification.* 

Examples such as these prompt us to ask: What are the 
central problems in the mathematical research of to-day? 
Each mathematical period has its own characteristics. The 
discovery of the calculus was followed by a notable period 
which I shall term the differential and gravitational epoch 
of mathematics, in which the consequences of the new calcu­
lus absorbed the attention, while at the same time it was 
developed as the handmaid of astronomy and physical science. 
The names of Euler on the one side, of Lagrange and Laplace 
on the other, serve sufficiently to specify the era and its 
two-fold aspects. For many reasons the last quarter of the 
nineteenth century might be termed the group period, from 
which we have only In part emerged. I need not tell you how 
necessary it became to explore geometry and analysis under 
the guidance of the group concept. Yet there are reservations 
which must be made in designating this quarter century as 
the group period. Likewise it is necessary to qualify any 
answer to the difficult question: What is the dominant prob­
lem or central thought in the research of to-day, if there be 
one? Nevertheless, let us be so importunate as to insist upon 
an answer, however foolhardy. 

In the field of applied mathematics probably the "problem 
of three bodies" can be picked out as par excellence the present-
day problem. Already in the hands of Poincaré this has given 
a first quickening of the fossilized methods of mathematical 
astronomy. In pure mathematics, to which I shall confine 
my attention, the number of conspicuous problems is legion, 
but above them all there looms, I think, in manifold aspects 
the problem of the infinite set. Analysis, geometry, and 
mechanics alike have been rapidly and increasingly permeated 
by the point set theory of Georg Cantor, in which the central 
core is the problem of the infinite set. More and more do the 
problems in these branches require, in some form or other, 
up-to-date knowledge of the infinite set. Consider, for 
example, what is called the problem of the primitive function. 
Given a function F(x), what conditions must be imposed 

* Many kinds of geometries and number fields have come to be dis­
tinguished. Their study and correlation are a feature of modern mathe­
matical research which I have not found it convenient to discuss in this 
address. 
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upon it in order that there shall exist another or "primitive 
function" whose derivative is the given function? Or take 
the alternative question: What generalization shall be made 
in the notion of a derivative in order that as wide a class of 
functions as possible shall possess a primitive? Answers to 
these questions must involve a careful study of the infinite 
set of discontinuities of a function. 

The characteristic tendency in the thought of to-day 
which I have tried to grasp under the comprehensive term 
"Problem of the infinite set" is shown rather as a current 
beneath the surface than in any individual concrete problem. 
The average investigator must perforce seize upon any prob­
lem which his brains find at hand. There exist, however, 
certain fundamental principles which will aid him in finding a 
worthy one. The great mathematician Jacobi is said to have 
inculcated upon his students the dictum: Man muss immer 
umkehren. One must always seek a converse, turn a thought 
the other end to. It was by turning the elliptic integral 
inside out that Jacobi obtained his splendid theory of elliptic 
and theta functions. As other instances of the same principle 
I cite at random the implicit function theory which under­
lies so much modern investigation, and the perception of the 
existence of transcendental numbers through failure of the 
finite processes which produce our ordinary numbers. 

Without dwelling further upon the fertility of Jacobi's 
dictum, I wish to coin and put beside it another obvious dictum 
of yet wider reach: Man muss immer £eneralizieren. By this 
I do not mean cheap generalization to n dimensions or variables 
of that which has been already done for two or three. Not 
infrequently, however, generalization even to n variables is a 
problem of importance and difficulty, inasmuch as the solution 
for the special case of two or three variables may possess a 
distinctive structure and character and hence be in no way 
typical. A notable instance of such difficulty is found in 
the generalization of the ordinary second order conditions 
for the maximum of a definite integral in the calculus of 
variations, while extraordinary obstacles are encountered 
in the extension of the theory of analytic functions to two 
or more variables. But whether or not extension to n dimen­
sions be trivial, generalization to a countably infinite number 
of dimensions becomes sublime! With a further extension 
to an uncountably infinite number of dimensions or variables 
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it might seem that we would reach a sublimated or etherial 
stage of mathematical development, but such flippant char­
acterization would give an altogether false impression of 
Volterra's theory of functions of lines. 

Extension to a countably infinite number of variables 
commonly affords opportunity for the finest sagacity and 
insight. An excellent program for work could be found in 
extension of almost any finite theory. It is your own Pro­
fessor Moore whom I have heard glowingly preach that to 
every finite theory there must correspond, under proper 
limitations, a general transcendental theory with an infinite 
number of variables. What' is more beautiful and simple in 
elementary mathematics than the application of the theory 
of determinants to the solution of a set of n linear equations 
in n variables 

(1 + an)xi + anx2 + • • • + aux*, = Ci, 

arnxi + a2nX2 + • • • + (o»n + l)xn = Cn; 

such a system as we learned to solve even before we reached 
quadratic equations in algebra? Now it was precisely a 
passage from this simple system of linear equations to a system 
with a countably infinite number of unknowns which gave 
to Volterra and Fredholm the basis of their theory of integral 
equations. At the limit the system of linear equations passes 
into a linear integral equation 

u(x)+ f u(OK(x} S)de = ƒ(*), 

in which everything is given except the function u(x) which 
is to be found. The solution (x\, %2i • • •, xn) of the linear 
system with the indefinite increase of n passes over into the 
solution u(x) of the integral equation, but the legitimacy 
of the passage to the limit and of the solution must be veri­
fied in some manner. From the very outset the theory of 
integral equations has been found very useful in applications to 
mathematical physics and elsewhere. This might be expected 
because it is the generalization of the elemental theory of 
a set of linear equations. 

The solution of integral equations is only one of many 
evidences of the mathematician's tightening grip upon the 
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infinite. The infinite increase in the number of variables 
in our mathematical problems necessitates geometrically a 
theory of space of countably infinite dimensions. Already 
a promising beginning has been made by restricting the 
attention to Hilbertian space—that is, to that portion of 
infinitely-dimensioned space for which ?ïxn

2, the sum of the 
squares of the coordinates of a point, is convergent. The 
familiar conditions for orthogonality of lines, etc., then 
generalize without material modification. 

The theory of a space of infinitely many variables is com­
panion to an incipient theory of functions of an infinite 
number of variables. I fancy a smile, inward or outward, on 
the faces of some of the physicists and astronomers present, 
to whom such a function theory may seem highly typical of 
the theoretic, up-in-the-air character of the mathematician 
and his work. Let me try to address to you some arguments 
ad hominem. Have you nothing of such character in physics? 
In my early life, when I was hesitating between mathematics 
and physics as a profession, I first encountered Lagrange's 
generalized coordinates, whose number, by the way, need not 
be finite. The equations for motion, energy, etc., were set 
up in terms of these generalized coordinates. I shall never 
forget how the glittering generality of the theory astonished 
and fascinated me. And when the equations were actually 
applied to sundry objects—as, for instance, to the gyroscope 
—it seemed to me then, as it almost does still, about the 
finest example of getting something intellectually out of 
nothing that I had ever come across. The very generality 
of the coordinates gives to them adaptability to the varying 
complications of physical science. Now most phenomena of 
nature depend in their final analysis upon an infinite number 
of variables. How then can it be thought that we can master 
them unless the mathematician prepares the way by de­
veloping a theory of functions of infinitely many variables? 
The potential or force due to an electric current in a wire 
is a function of the shape of the wire and depends therefore 
upon the uncountably infinite number of its points. Indeed, 
it is not the pure mathematician who has been so hardy and 
rash as to attempt the beginning of a theory of functions of 
lines. No, the bold pioneer in this new field is no other 
than a mathematical physicist or, as we may claim with equa 
truth, a physical mathematician—Volterra, a superb interpre* 
ter of current tendencies. 
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Time fails me to speak of the closely related and funda­
mental "functional calculus" initiated by Fréchet, certain 
aspects of which are being developed here at Chicago by 
Moore and his pupils. 

An effect, and likewise a cause, of the generalized aims 
in mathematics, of which I have thus far spoken, has been the 
creation of refined mathematical tools. Under the term 
"mathematical tool" I mean to include concepts and al* 
gorisms which are usable for the demonstration of mathe­
matical truth. The importance of concepts broadly compre­
hensive in their reach is shown alike by the history of geometry 
and of analysis. The open plane of Euclid yields a general 
geometry only after the introduction of ideal elements which 
we call the point, line, etc., at infinity. The creation thereby 
of a closed and perfect projective geometry was one of the 
milestones of mathematical progress in the century just past. 
Poncelet's comprehensive principle of geometric continuity, 
justified at first rather by necessity than by adequate logic, 
was another indispensable geometric creation. In the notion 
of a group we have a concept which reaches pervasively 
through the realms of geometry and analysis. Still another 
example of the fecundity of the subtler concepts forged by the 
progress of science is to be found in Hill's "periodic orbit," 
introduced in the theory of attraction as a norm from which 
to reckon the deviation of the orbit of the heavenly body. 

My remaining illustrations will be taken chiefly from 
analysis, partly because it is the province with which I am 
most familiar, but also because the same general tendency 
which was exhibited conspicuously in the magnificent enlarge­
ment of geometry in the half century from 1820 to 1870 is 
to-day manifested in the broadening of analysis. Consider the 
familiar notion of an integral, apparently moulded to a finality 
in the hands of Riemann. This admits a finite number of 
discontinuities but an infinite number only under certain 
narrow restrictions. A totally discontinuous function—for 
example, one equal to zero in the rational points which are 
everywhere dense in the interval of integration, and equal 
to 1 in the irrational points which are likewise everywhere 
dense—is not integrable à la Riemann. The restriction 
became a very hampering one when mathematicians began 
to realize that the analytic world in which theorems are 
deducible does not consist merely of highly civilized and 
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continuous functions. In 1902 Lebesgue with great penetra­
tion framed a new integral which is identical with the integral 
of Riemann when the latter is applicable but is immensely 
more comprehensive. It will, for instance, include the totally 
discontinuous function above mentioned. This new integral 
of Lebesgue is proving itself a wonderful tool. I might 
compare it to a modern Krupp gun, so easily does it penetrate 
barriers which before were impregnable. 

Some of the newer mathematical concepts resemble the 
modern telescopes, disclosing new worlds of theorems and ideas 
bound together in a common system. Other concepts because 
of their high dispersive power act more like the optical grating, 
making new distinctions visible. This is particularly true 
of the modern theory of point sets which gives a grip on 
weird sets of points almost inconceivable in their irregularity. 
Take for consideration the two sets of points of which I spoke 
a few moments ago, the set of rational points everywhere 
dense and the set of irrational points likewise everywhere 
dense in a given interval, confusedly mixed together like 
grains of pepper and salt. Which predominates? Should 
the mixture be called white or black? Would it seem possible 
to say? Yet the theory of point sets tells us that the black— 
i. e., the irrational points—predominate; that the rational 
points are the exception and have a measure 0, while the 
irrational points have a measure equal to the length of the 
interval. The rational points are weighed in the balance 
by Borel and Lebesgue and are found altogether lacking, at 
least in measure. They afford an example of what may be 
termed a null set, that is, a set of measure 0. It is natural to 
expect that such a set of points would be without influence 
on many results—for example, on the value of a Lebesgue 
integral. This turns out to be the case. By allowing for a 
set of exceptional points of measure 0 many theorems can 
now be perceived and demonstrated which before were un­
thinkable. 

Along with the widened aims and concepts of mathematics 
have come fresh methods and distinctive styles of thought. 
Look first at the older methods. The work of the grand old 
mathematicians of the seventeenth and eighteenth centuries 
was based on definite algorisms, such as the hypergeometric 
series of Gauss and the Taylor power series. Euler, in par­
ticular, was astonishingly prolific in algorisms. When the 
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function theory sprang into existence it became even more 
indispensable to make elaborate studies of special algorisms 
and functions. A host of particular functions absorbed 
the attention of mathematicians—elliptic functions, auto-
morphic functions, BesseFs functions, other functions defined 
by differential equations, and so on. The function theory of 
Weierstrass was based on a definite algorism, the Taylor 
power series. In recent times other processes and functions 
have received attention, for example, algebraic continued 
fractions and divergent series, factorial series, Dirichlet 
series, and so on. Definite algorismic work must, indeed, 
always remain of primary importance, not only on account 
of its use in calculation but also because the progress of our 
science continually introduces new functions for study. At 
the same time older processes need to be reexamined under 
modern lights,—for instance, the difference equation which 
has been considered by Nörlund, Birkhoff, and Carmichael 
in the light of the analytic function theory. 

In sharp contrast with this algorismic work so character­
istic of earlier time is a distinctively modern turn of thought 
which perhaps first found a clear exponent in Riemann. 
He presents a strange antithesis to his contemporary country­
man, Weierstrass. Riemann bases the function theory upon 
a property rather than upon an algorism—to wit, the 
possession of a differential coefficient by the function in the 
complex plane. Thus at a stroke it is freed from dependence 
upon a particular process like the power series of Taylor. 
His celebrated memoir upon the P-function is a characteristic 
development of a whole Schar (family) of functions from 
their mutual relations. 

A first aspect of the peculiar thought-mode of which Rie-
mann's is a type is definition and development of a function 
from its properties. One illustration is found in the defini­
tion of a function by building a given region point for point 
and conformally upon another given region. In severe 
cases the regions may even contain an infinite number of 
leaves properly bound together. This illustration is sig­
nificant also of a certain modern tendency to build mathe­
matics upon correspondence and order. The boundary value 
problems of mathematical physics afford another example of 
definition of a function through its properties. As an effect 
of this tendency we may expect ultimately a great develop-
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ment of the incipient theory of functional equations. In 
this theory a single equation or system of equations expressing 
some property is taken as the definition of a class of functions 
whose characteristics, particular as well as collective, are to 
be developed as an outcome of the equations. 

A second phase of the same thought tendency is to be 
found in the existence theorems so characteristic of modern 
analysis. Existence proofs are, indeed, a preliminary and 
indispensable element, if functions are to be defined through 
their properties. Their rôle has been discussed so often 
that I need not enlarge upon it. 

A third phase of the same tendency is the modern examina­
tion of the postulates of geometry, arithmetic, algebra, and 
even mechanics. This postulational work seizes the material 
at the root before development sets in. It has to face the 
obvious objection that it is an exercise in sterile logic rather 
than creative mathematics. A swirling brain like Poincaré's 
will never stop in its constructive work for abstract postu­
lational considerations, but will leap gaps like an electric 
spark. To this objection the rejoinder may be made that 
critical revision is not so far from creative thought as is 
generally supposed; that postulational theories are to-day 
much more fertile than in the past, that such postulational 
developments as Hilbert's in his famous Foundations of 
Geometry and his foundations for a geometric group theory 
are, in fact, creative work of highest order; that Lebesgue 
formulated his concept of a generalized integral in the light of 
postulational requirements; and so on. 

In this connection the primal thought which lies at the 
bottom of Moore's General Analysis deserves special con­
sideration. When, he argues, a number of similar results 
in different fields are compared, the belief is forced irresistibly 
upon one that the essential oneness of the results must be 
due to identity of the hypotheses, this identity being partially 
or altogether veiled from sight by the admixture of foreign 
ingredients, as in chemical compounds. To apply a technical 
term, we have before us theories to be rendered simply iso­
morphic. The problem before the mathematician is accord­
ingly to extract the common basis and exhibit the results 
as consequences of a common set of hypotheses applicable to 
varying conditions and objects. Thereby not only will like 
theories be coordinated, but the common underlying prin-
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ciples laid bare will be ready for use elsewhere. Doubtless 
the mathematician will continue to be guided for the most 
part by analogy in the future as in the past, but I doubt not 
that the isolation of the common elements in like theories will 
be stimulating and productive, even as the postulational study 
of the foundation of geometry has led to the discovery of new 
geometries. The general analysis has furthermore the advan­
tage over ordinary postulational investigations of not tapping 
the root but the sap. 

The change in method of which I have spoken centers 
largely in the prescription of properties and postulates rather 
than of algorisms. Entirely different from this is the in­
creasing tendency to recast a problem so as to make it fertile. 
In the words which I have heard Hadamard employ, a problem 
must be "bien posé," fittingly formulated in order to give 
rich result. The inner nature of the problem needs to be 
comprehended. It carries in itself its own inherent limitations 
on its solution. To illustrate by drawing upon the calculus 
of variations, the problem of minimizing the integral 

fF(x,y,y',v", --fy
(n))dx 

by a function f(x) is badly formulated and does not admit of 
precise answer unless we specify the class of functions from 
which the solution is to be taken. If we take, for example, 
the solution from functions of class C(n) in Bolza's terminology 
—that is, functions which are continuous together with their 
derivatives down to the nth. inclusive—the problem then 
becomes well formulated and can be tackled successfully. 
In this particular case we impose limitations in order to 
well-formulate the problem. But it is distinctly modern to 
make a problem solvable by widening it so as to make it 
more instead of less comprehensive. Thus a problem not 
possible of general solution if only functions integrable in the 
ordinary Riemannian sense are considered, may become 
so if Lebesgue integrals are admitted. In fact, the solution 
may depend upon the kind of tool employed, and a careful 
study of the adaptation of the tool to the problem and of 
the problem to the tool should therefore be made. Thus if 
the problem should involve convergence, its character and 
formulation may change according as the tool involved is 
ordinary convergence, uniform convergence, quasi-uniform 
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convergence, convergence "en moyen," or essentially uniform 
convergence. 

In conclusion, partly by way of illustration and partly by 
way of summary, let me present a theorem which embodies 
most of the tendencies of which I have spoken. This is the 
so-called Fischer-Riesz theorem, remarkable for its elegant 
character. You all know the representation of a function 
f(x) by a Fourier series, 

77 H— X) (a>n cos nx + bn sin nx), 

in which the coefficients are obtained from the function by 
the equations 

0» === I ƒ(#) cos nxdxy bn = I fix) sin nxdx. 
J—IT J—TT 

Now as Jacobi said, Man muss immer umkehren. Instead of 
representing a known function by a Fourier series, let us seek 
conversely to represent a given Fourier series by a function. 
The given series may be either convergent or divergent. We 
have now before us one of the great problems of analysis. 

But before considering the problem let us obey the injunc­
tion: Man muss immer generalizieren. The Fourier series is 
only one of a class of series 

(I) ai4>i(x) + fl202 (a) + azfofa) + • • -, 

in which the functions have with respect to a given interval 
(a, b) the so-called orthogonality property, 

-»& 
4>i{x)4>j(x)dx = 0 (i H= j ) . ƒ 

If, further, the functions have been normalized, as was the 
case above in the Fourier series, we have also 

f 4>?(z)dz = 1. 

Such a series is called a generalized Fourier's series, of which 
many special cases are well known, as, for instance, a series 
in terms of Legendre polynomials. 

The problem now before us is to represent such a series, 
whether convergent or divergent, by a function and to derive 
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the function from the series. We shall agree to say that a 
function f(x) represents the series if 1) it is connected with 
the series by the equations 

an = I <j>n{x)f{x)dx 

and thus generates the series in the customary way; and if 
2) the function agrees in value with the series at all points 
of the interval (a, b) for which the series is convergent. 
The questions now confront us: When will such a function 
exist? How can it be obtained from the series? To what 
extent is it unique? In this shape the problem would be 
almost or quite insoluble. The problem is not yet " bien 
posé." For good formulation we must change the tool and 
use Lebesgue integrals throughout, thus extending the class 
of functions admissible for the representation of the series. 
Furthermore, in deriving the function from the series we will 
not require that the function and the series shall agree at all 
points of convergence but will allow exceptions at an infinite 
number of points forming a set of measure 0. 

It is now possible to state the theorem which Fischer and 
Riesz obtained independently by different methods. The 
necessary and sufficient condition that there shall exist a 
function representing the series (and having an integrable 
square ƒ 2{x)) is that the sum of the square of the coefficients, 
San

2, shall be convergent; in other words, the point (ai, a2, • • •) 
must lie within Hilbertian space of infinitely many dimen­
sions. The function is completely determined save at an 
arbitrary set of points of measure zero, where we can give the 
function any value we choose. It can be obtained from the 
series by a proper grouping of the terms without change of 
order, which will render the series convergent except possibly 
at a set of points of measure 0. The study of the convergence 
of the series has brought to light two new modes of con­
vergence, one of which, Weyl's essentially uniform conver­
gence, seems to me very important. The other I shall stop 
to explain briefly because it is an admirable example of 
generalized concept and because I think that it may interest 
those of you who are acquainted with the theory of least 
squares. If Sn(x) denotes the sum of n terms of our gener­
alized Fourier series (I) and if f(x) is, as before, the function 
represented by the series, the square of the error at any 
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point x of the interval is [Sn(x) — f(x)]2, and the sum of the 
squares of the errors taken over the interval is the integral 

[Sn(x) — f(x)]2dx. As n increases indefinitely, this error 

integral approaches 0, so that the series converges "en 
moyen" (on the average) although there may be no true con­
vergence in the ordinary sense of the term. Conversely, if 

I [Sn+m(x) - Sn(x)]2dx 

can be made as small as we please by taking n sufficiently 
great, then there exists a function f(x) toward which the 
series converges en moyen. 

But enough of this. I trust that you see that the Fischer-
Riesz theorem affords an elegant example of modern mathe­
matical research—characteristic in its generalized sweep, 
in its creation and use of refined tools and concepts, in its 
recasting of the problem so as to make it fertile, and lastly 
in its attainment of success through point set considerations, 
involving in this case the recognition of a null set of exceptional 
points. Not a little of the work of analysts for some time to 
come must center around the numberless new notions until 
their "Tragweite"—their carrying power and reach—is deter­
mined. To a great extent they have modified the character 
of current investigation. There is regretably less of the 
action and interaction of mathematics and mother nature. 
There is also insufficient study of approximation and astro­
nomical mathematics—fields which are fortunately represented 
here by Moulton and MacMillan and which serve to counteract 
or supplement a somewhat widespread abstruse inclination 
in our country. But the newer thought does make tremen­
dous advance when questions of theory rather than of cal­
culation are involved, and the combination of sweeping gen­
eralization with rigor is astonishing. There remains yet to 
be accomplished the complete interweaving and correlating 
of the old and the new. We cannot see far into the future, 
but the well of mathematics will not run dry as long as there 
remains such springs as the problem of three or n bodies, 
and the tantalizing, old, yet unsolved problem of the shape 
of curves of the nth. degree. 
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