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discussion. In so doing we have dug down to the very roots 
of geometry and dynamics but we have also touched the 
branches where the shoots are pushing out. Too much must 
not be claimed. Yet if the point-set theory is not the sap 
of the tree, it is at least one of its most indispensable in­
gredients. The usefulness of any mathematical theory must 
be determined not by its isolation but by its ability to combine 
with other theories. In this the point-set theory has shown 
itself most elastic. Had I more time I would attempt to 
show you that it offers many of the same advantages as analyt­
ical geometry. While strong for analysis and decomposition, 
it is equally strong on the constructive side. Complex group­
ings of points are made simple, and the way is thus prepared 
for new discovery. And above all, in its development the 
arithmetization of analysis is kept close to geometrical intui­
tion. 

In tracing the service of the theory of point-sets in geometry 
and dynamics, we have found only in part achievement, in 
part present evolution and promise. But it is precisely be­
cause of this mocking incompleteness that I have chosen for 
my topic today the rôle of the point-set theory in geometry 
and dynamics, trusting that for you also this will be its lure. 

UNIVERSITY OF WISCONSIN, 
MADISON, WIS. 

AN ENUMERATION OF INTEGRAL ALGEBRAIC 
POLYNOMIALS. 

BY PROFESSOR A, B. FRIZELL. 

(Read before the American Mathematical Society, January 1, 1915.) 

THE proof given by Weber* that the algebraic numbers 
form a countable set orders them according to the values of a 
certain function of the coefficients in their defining equations. 
The present note suggests a more direct enumeration of these 

n 

equations. The algebraic polynomials ]£ aiXn~~l in which all 
coefficients are natural numbers can be put into one-to-one 
correspondence with the set of natural numbers by the fol-

* Algebra, Bd. II, p. 824. 
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lowing device. To every kxr assign the number ph
r, where 

po = 2 and pr denotes the rth odd prime when r 4= 0. To the 
sum kixri + k2x

r* assign the product pj} • p% and so on. 
Thus the polynomial xs + 3#4 + 2 will have the number 
Ps • v\ • V\ = 23 X l l 3 X 22 = 122,452. Conversely, the poly­
nomial numbered 360 = 5 X 32 X 23 = p2 • p\ ' vl will be 
x2 + 2x + 3. 

The polynomials in which negative integers occur as coef­
ficients may be put into one-to-one correspondence with the 
set of positive fractions in their lowest terms by substituting 
division for multiplication in the above process. Thus to the 
polynomial xB — 3#4 + 2 will be assigned the fraction 

pi 1331 * 

These fractions can be counted off diagonally from the well-
known rectangular array where every element in the nth 
row has the denominator n + 1, and numbered with odd 
numbers, reserving the even numbers for the polynomials 
with positive coefficients, so that finally xs + 3xA + 2 is to be 
numbered 244,904. For example, to identify number 605 
= 2 X 303 — 1, we first obtain the greatest value of n which 
makes 

n(n + 1) . rtr^ 
-~—- S 303. 

This shows that number 303 in the rectangular array is the 
third fraction in the 25th diagonal, counting upwards. To 
avoid repetitions we will agree that the highest term in every 
polynomial shall be positive. This requires that the nu­
merator of each fraction shall contain a prime factor greater 
than any in the denominator. Hence number 303 is 

To determine the number which belongs to xs — 3x4 + 2, 
we count in row 1,330 up to 92, which is the 41st. Therefore 
92/1331 is in diagonal 1,370. The sum of the first 1,369 
diagonals is 937,765 and the required number is 1,875,611. 

MCPHERSON, KANS. 


