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7 being the angle between the directions 6, <p and a, 13. By 
using the Mehler formulée for Legendre's polynomials Pn, (18) 
may be transformed so as to contain elliptic sigma functions 
under a triple integral sign, giving a formula somewhat 
similar to (3). 
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T H E object of this note is to prove the following 
THEOREM. If p is an odd prime and the equation 

(1) xv + yp + zp = 0 

has a solution in integers x, y, z each of which is prime to p, then 
there exists a positive integer s, less than | ( p — 1); such that 

(s + iy s ^ 2 + 1 mod p\ 

The proof is elementary. If there exists a set of integers 
x, y, z satisfying (1), there exists such a set having the further 
property that they are prime each to each. Consequently, 
for the purpose of argument we may assume that x, y, z have 
this property. 

Then from elementary considerations it is known* that 
integers a, /3, y exist such that 

# + y = yp> y + z = ap, z + x = (3p. 
Therefore 

(2) (x + y)*-1 s i , (y + z)*-1 = 1, (a + x)^1 s 1 mod p\ 

since ap(p_1) = 1 mod p2 when a is prime to p. 
From (1) it follows that 

x + y + ^ = 0 mod p, 

* See, for instance, Bachmann's Niedere Zahlentheorie, Zweiter Teil, 
p. 467. 
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since xv = x, yv = y, zp = z mod p by Fermat's theorem. 
Writing x + y = Ap — z, we have readily (x + y)v = — zp 

mod p2. Replacing — zv by its value xv + yv and writing 
the resulting congruence and two similar ones, we have 

(x + yY ^x*> + y*, (y + zY = y* + z*>, 

(z + xY = zv -\- xv mod p2. 

From (2) and (3) we see that 

xv + yv = x + y, yv -\- zv ^ y -\- z, zv -\- xv = z-\- x mod p2. 

Adding these congruences and making use of equation (1), we 
have 

# + V + s = 0 mod p2. 

Then we may write x + y = Bp2 — z, whence (x + ?/)p = 
— sp mod p3. Hence, since — zv = £p + t/p, we have 

(« + yY = ^p + »*, (2/ + *)p = 2/p + ^p, 

(2 + xY ^ zv + xp mod p3. 

Adding these three congruences and employing (1), we have 
(4) (x + yY + (y + %Y + (z + xY = 0 mod ps. 

Now from (2) we have (x + yY~x — 1 + CP2> whence it 
follows that 

(x + Î/)P ( 2 , _ 1 ) = 1 mod p3; or (x + yY2 = (x + yY mod ps, 

with similar congruences f or y + 2 and z + x. From these 
congruences and (4) we have the following relation: 

(5) (x + yY2 + (y + *Y2 + 0 + xY2 = 0 mod p\ 

But x + y = Ap — z, and therefore (x + yY2 = — sp2 mod p3, 
with similar congruences f or y + z and 2 + #. Substituting 
in (5), we have 

(6) xp2 + y?2 + z*2 = 0 mod p\ 

Now let a be the positive integer less than p such that 

y = ax mod p. 
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Then since x + y + s = 0 mod p we have x + ax + 2 s= 0 
mod p or 2 = — (<r + 1)# mod p. I t is then obvious that 
yp2 SEE (o-a:)?2 mod p3 and ^ 2 = { - (a + l)x}*>* mod p3. Sub­
stituting in (6) and dividing the resulting congruence by 
xp2, we have 

(7) (<r + 1)*>2 = ^ + 1 mod p3. 

If o- < J(p — 1), it may be taken for the s of the theorem, 
and our demonstration is then complete. If <r > J(p — 1)> 
write 

s = p — o- — 1, 

whence 5 < §(p — 1). From (7) we have 

(a + 1 - p)*" s (<r - p)*>2 + 1 mod p3; 

or 

(p - cr)p2 = (p - a - l)p 2 + 1 mod p3, 

whence 

(̂  + \y = s*2 + 1 mod p3. 

If e = | ( p — 1) we have from (7), on multiplying by 2P\ 

(p + \y = (p - I)?2 + 2*>2 mod p3; 
or 

1 s - 1 + 2^2 mod p3, 
whence 

2^2 = 2 mod p3, 

so that for the s of the theorem we may in this case take s = 1. 
This completes the demonstration of the theorem. 

COROLLARY. If any two of the numbers x, y, z are congruent 
modulo p, then 

2**2-1 » 1 mod p3. 

For, if x and y are congruent, a is equal to unity and the 
corollary follows at once from (7). A similar proof may of 
course be made when y and z or z and x are congruent. 

From the way in which the theorem was proved it is clear 
that in general there are several values of a satisfying con­
gruence (7). Thus if <JT = 1 mod p, so that x == ry mod p, 
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it is obvious that we have also 

(r + 1)P2 = rp2 + 1 mod p\ 

But this congruence is implied by (7) alone, as one may 
readily verify by multiplying (7) by rp\ Other cases may be 
dealt with similarly. 

INDIANA UNIVERSITY, 
November, 1912. 

INTEGRAL EQUATIONS. 

Introduction à la Théorie des Equations intégrales. By T. 
LALESCO. Paris, A. Hermann et Fils, 1912. 152 pp. 

Ly Equation de Fredholm et ses Applications à la Physique mathé­
matique. By H. B. HEYWOOD and M. FRECHET. Paris, 
A. Hermann et Fils, 1912. 165 pp. 
T H E theory of integral equations has been developed since 

the publication of Volterra's first paper in 1896, and most of 
the work has been done since Fredholm's fundamental memoir 
appeared in 1900. Yet, in this comparatively short time, the 
number of printed papers dealing with the subject has become 
so great that one approaching the subject for the first time is 
embarrassed by the wealth of material at his command. The 
two books mentioned above have been written for the beginner 
in the study of this interesting and useful branch of analysis. 
The authors have given a clear and concise exposition of the 
fundamental principles and of the most important results 
obtained up to the present time. While admitting freely that 
there i s much yet to be done both on the theoretical side and 
the side of applications to mathematical physics and me­
chanics, there can be no doubt that the fundamental portions 
have already reached a form that will remain classic, and that 
it is now desirable to have them in book form for the conven­
ience of the mathematical public. These two small volumes 
will be found very useful to the reader who wishes merely an 
acquaintance with the first principles of the subject, as well as 
to the reader who expects to attain a wider knowledge by 
studying the journal articles. While there is necessarily some 
repetition the two books may well be used together. The 
first one is devoted to the theory of integral equations and 


