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E E M A E K S CONCERNING T H E SECOND VARIA­
T I O N FOR I S O P E R I M E T R I C PROBLEMS. 

BY PROFESSOR OSKAR BOLZA. 

I N his lectures on the calculus of variations (Göttingen, 
1904-05), Hilbert has given an elegant modification of Weier-
strass's proof of Euler's rule for isoperimetric problems, which 
reduces the proof to the consideration of an ordinary extremum 
with a condition. The object of the present note is to show 
how the same method can also be applied to the second variation. 

§ 1. llilbert's Proof of Euler's Rule* 

We consider the problem of minimizing the integral 

X
Xt dy 

f(x, y, y)dx, y = ^ , 
with respect to the totality of curves y = y(x) of class C which 
join two given points P1(xv yx) and P2(x2, y2), lie in a certain 
region 9? of the x, ;?/-plane, and furnish for the integral 

(2) K= g(x,y>y)dx 

a given value L The functions ƒ and g are supposed of class C " 
in the domain 

(x, y)in% — oo < y' < + oo. 
Let 

@o: y = y{x)> »! = » = » a 

be a solution of the problem which lies in the interior of the 
region 9î, and which is not at the same time an extremal for 
the integral K. Then we can obtain, according to Weierstrass, 
a set of admissible variations of ©0 as follows : 

Let y^x), rj2(x) be two arbitrary functions of x of class C in 
the interval (xxx2), and vanishing at xx and x2 ; then the curve 

V = y(«) + ^,0*0 + *2%(x) = Yix> €v €2)> »i < « < »a 

*The same proof is given by Kneser, *' Euler und die Variationsrechnung, " 
Abhandlungen zur Qeschichte der mathematischen Wissenschaften, Bd. XXV 
(1907), p. 50. 
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will be an admissible variation of ©0 provided that the two 
constants ev e2 satisfy the relation 

I g{x, Y, Y')dx = l 

Hence,* the function 

f(x, V, Y')dx 
x l 

of the two variables ev e2 must have, for el = 0, e2 = 0, a minimum 
restricted by condition (3). 

But if a function f(x, y) has for x = a, y = b a (relative) 
minimum restricted by the condition 

(4) cf>(x, y) = 0, 

and if the two derivatives 4>x(à, b\ $y{a, b) are not both zero, 
there exists a quantity X such that 

(5) ƒ,(<*, b) + \<j>x(a, b) = 0, f Jo, b) + X^(a, b) = 0, 

and moreover, if we put 
F=f+\<f>, 

the inequality 

(6) F ÔI-2F óó + F o?|*=*>0 
V / xxT y *"-*- xyTxTy I -"- yyTX\ — v 

must hold.f 
Applying these results to the function J(ev e2), it follows in 

the first place that there must exist a constant X such that the 
two equations 
(7) J1 + \E1^0} J2 + \K2 = 0 
hold simultaneously, where 

(dK\ rx* 

* Here Hubert's proof branches off from Weierstrass's ; the latter proceeds 
by solving (3) with respect to e2. Compare for instance my Lectures, p. 208. 

f in order to prove these statements, it is only necessary to solve, by 
means of Dini's theorem on implicit functions, equation (4) with respect to 
Vi y — ty{x)i and to apply the ordinary rule for an extremum of functions of 
one variable to the compound function f(x, t)(x) ). The proof presupposes 
that ƒ and <j> are of class G" in the vicinity of (a, b). 
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provided, however, that Kx and K2 are not both zero. But 
since @0 is not an extremal for the integral K, we can always 
choose r)2 so that K2 4= 0. 

The function TJ2 being so chosen, the second of the equations 
(7) determines X and shows that the value of X is certainly in­
dependent of the choice of the function rjv Hence it follows 
from the first of the equations (7), according to Du Bois-
Reymond's lemma, that y(x) must satisfy the differential equation 

(8) 

where 
(9) 

h — -y- h , = 0, 
y dx y y 

h=f+\g. 

§ 2. Application of Hubert's Method to the Second Variation. 

We proceed next to apply the second necessary condition (6) 
to the extremum of the function J(ev e2). The condition takes 
here the form 

(10) K*(JU + \Kn) - 2KXK2(J12 + \Kl2) 

+ K\(J22 + \K^% 
where 

But by an easy computation the inequality (10) reduces to 
s*x2 

(11) {hvyV*+2hvy,vv+hyvV'yx^0, 

where 
(12) v = K2Vl-irlV2. 
The inequality (11) must hold for all functions rjv TJ2 of class 
G' which vanish at xx and x2J and it must be remembered 
that Kx and K2 vary with rjl and r)2 respectively. 

From the definition of Kx and K2 it follows that 

(13) te,v+g,vyh>-0. 
*Jxi 

Conversely, the equation (12) represents the most general func­
tion 7] of class G which vanishes at xx and x2 and satisfies 
(13). For let rj be any function satisfying these three condi-
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tions. Then choose for w2 any function which satisfies the two 
first of them and for which K2 =(= 0. Let c be a constant arbi­
trarily chosen and determine rjl by the equation 

V = K2Vi — G%-

Then v1 is of class C\ vanishes at xx and x2, and c = Kv as 
follows from (13). 

Hence we obtain the result: The inequality (11) must be 
satisfied for all f unctions w of class G' which vanish at xx and x2 

and satisfy the relation (IS). 
This is the theorem which we wished to establish by means 

of Hubert's method. In order to recognize the advantages of 
the new proof, let us compare it with the ordinary proof which 
proceeds as follows : 

Suppose we had found — no matter how — a one-parameter 
set of admissible variations of the curve @0, 

14) y = y(x, e). 

Then we must have for this set 

(15) S 2 J ^ 0 . 

In the discussion of this inequality two difficulties arise which 
have no analogue in the corresponding discussion for the uncon­
ditioned problem : 

1) The integrand in h2J contains the second variations 82y, 
h2y', whereas in the unconditioned problem only the first varia­
tions 8y, 8y' occur, owing to the fact that in the latter problem 
it is sufficient to consider variations of the simplest type 

y(x, e) = y(x) + en(x), 

which is no longer possible in the isoperimetric problem. 
This difficulty is removed by eliminating* h2y, 82y' by means 

of the equation S2K = 0, the result being 

(1) 82J+\S2K^0. 

2) This inequality, which contains only the first variations 
&/, hy\ must hold for all functions hy which can be derived 
from an admissible variation (14) by the 8-process. But the 
totality of these functions is identical, according to a lemmaf due 

* Compare the remarks by Swift, BULLETIN, vol. 14 (1908), p. 373. 
t Compare for instance my Lectures, p. 214. 
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to Weierstrass, with the totality of those functions Sy of class 
G' which vanish at xx and x2 and satisfy the relation hK = 0. 

The proof of this lemma — which is an essential step in the 
chain of conclusions, and whose omission forms a serious gap 
in the older theory — constitutes the second difficulty. 

Neither of these difficulties occurs in the proof which we 
have given above. 

FREIBURG, i. B., 

November 19, 1908. 

NOTES ON T H E S I M P L E X T H E O R Y O F 
NUMBERS. 

BY PROFESSOR R. D. CARMICHAEL. 

(Read before the American Mathematical Society, October 31, 1908.) 

I . Continued Product of the Terms of an Arithmetical Series, 

1. Let a and c be two relatively prime positive integers and 
form the arithmetical series 

xa + c, (x = 0, 1, 2, • • -, n.— 1). 

If we inquire what is the highest power of a prime p contained 
in the product 

J J (xa + c), a =J= 0 (mod p), 
x=0 

we shall find that the general result takes an interesting form. 
The solution of the problem may be effected in the following 
manner : 

Evidently there exists some number x such that xa + c is 
divisible by p. Let i be the smallest value of x for which this 
division is possible, and let cx be the quotient thus obtained. 
Using the notation 
(1) H{y] 

to represent the index of the highest power of p contained in yy 

we will show that 

(2) ^ r f f (a» + «)} - ^ T l l (a» + «!)}+«!+ 1, 


