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THE GROUPS CONTAINING THIRTEEN OPERA­
TORS OF ORDER TWO. 

BY PEOFESSOE G. A. MILLEE 

(Read before the American Mathematical Society, February 24, 1906.) 

I T is known that a group of order 2m cannot contain exactly 
thirteen operators of order 2, but that there are other groups 
which have this property.* Let G represent such a group. 
We shall first consider the case where the operators of order 2 
in G form a single set of conjugates. In this case 6? transforms 
these operators according to a transitive substitution group of 
degree 13. The subgroup of G which corresponds to identity 
in this transitive substitution group will be represented by H. 

If H were of even order, it would contain an operator of order 
2 which would be commutative with every operator of this order 
contained in G. From this it would follow that each of these 
operators would be commutative with all of them. This is im­
possible since they cannot all be contained in a group of order 
2m. Hence H is of odd order. 

The substitution group which is simply isomorphic with G/H 
must therefore contain substitutions of order 2. Since the group 
of order 2A, h being the order of H, which corresponds to the 
group generated by such a substitution contains at least one 
operator of order 2, the substitution group of degree 13 con­
tains exactly 13 substitutions of order 2 ; hence it involves 
only one subgroup of order 13 and its order is a divisor of 156. 
Moreover, all the operators of H are commutative with every ope-
rator of order 2 contained in G. 

The product of two operators of order 2 contained in G 
corresponds to an operator of order 13 in the isomorphic group. 
Since this product is transformed into its inverse by each of its 
factors,f and since the operators of H are commutative with 
each of these factors, it follows that this product is of order 13. 
That is, any two operators of order 2 contained in G generate the 
dihedral rotation group of order 26. As each of the operators 
of this group is commutative with every operator of H} it fol-

* BULLETIN, vol. 12 (1905), p. 74. 
t BULLETIN, vol. 7 (1901), p. 424. 



290 A CERTAIN CLASS OF GROUPS. [Mar., 

lows that G contains the direct product of a group of odd order 
and the dihedral rotation group of order 26 as an invariant sub­
group. The quotient group of G with respect to this invariant 
subgroup is contained in the cyclic group of order 6. 

The order of G cannot be divisible by eight when all the 
operators of order 2 are conjugate. If this order is divisible by 
four the subgroups of order 4 are cyclic. Hence it follows that 
each of the Sylow subgroups of G whose order is a power of 
two contains only one operator of order 2 when the operators 
of this order in 6? form a single conjugate set. Conversely all 
the operators of order 2 must be conjugate under G whenever 
a Sylow subgroup of order 2m contains only one operator of this 
order. Hence it follows that in the groups which remain to 
be considered each Sylow subgroup of order 2m contains more 
than one operator of order two. 

§ 1. Groujos Containing a Set of two Conjugate Operators, 
of Order 2. 

Let 8V s2 be two operators of order 2 contained in G, such 
that flj is transformed into s2 by exactly half the operators of G. 
As every operator which transforms sx into s2 must also trans­
form s2into sv G contains operators whose orders are powers of 
2 which transform s1 into s2. Hence the Sylow subgroups of 
order 2m contained in G are non-abelian and their orders must 
be divisible by 8. As the product sxs2 is invariant under G, 
it is included in every Sylow subgroup of order 2m. The Sylow 
subgroups which contain s{ must therefore also contain s2. That 
is, every Sylow subgroup of order 2m includes the four group 
generated by sv s2. 

Every Sylow subgroup of order 2m includes other operators 
of order 2. Let s3 represent such an operator. We shall first 
prove that sB cannot be commutative with sl and s2. If this 
were the case, a Sylow subgroup S would contain at least seven 
commutative operators of order 2. I t could not contain exactly 
seven operators of order 2, since 10 is not divisible by 4. I t 
could not contain eleven operators of this order;* for there 
would be some other Sylow subgroup Sx which would contain 

* This is a special case of the theorem : if a Sylow subgroup of any group 
G contains more than one subgroup of order p without including all the 
operators of order p in G1 then G contains at least p2 subgroups of order p 
which are not in a given Sylow subgroup. 
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at least two operators of order 2 which are not in 8. One 
such operator would transform 8 into 82 having at least two 
operators of order 2 which are not in 8. As 82 could not con­
tain this transforming operator, it follows that 8l would contain 
at least two operators which are neither in S nor in 8r Since 
82 would contain at least two other operators of order 2 which 
are not in 8, it is clear that 8 could not contain more than nine 
operators of order 2. 

If 8 contained nine operators of order 2 and if sH were 
also commutative with sl and s2, the operators of order 2 which 
are not in the group generated by sv s2, ss could not be 
commutative with sv Hence sv s2, ss would generate an in­
variant subgroup of 8. As an operator of order 2 could not 
transform this subgroup into itself without being commutative 
with at least four of its operators, 8 could not contain exactly 
nine operators of order 2. Hence, as stated above, s3 cannot 
be commutative with sx and s2. 

Since s3 transforms s, and s2, it, together with these two oper­
ators, generates the octic group. We shall now consider the 
case where 8 contains no operator of order 2 besides those of 
this octic group. As all the conjugates of 8 have three oper­
ators in common, there are just ûye distinct octic subgroups in 
these conjugates. These subgroups are transformed by all the 
operators of G according to a transitive group T of degree 5. 
Since T contains a complete set of five conjugate operators of 
order 2, it can involve only one subgroup of order 5. The oper­
ators of G which correspond to identity of T constitute an 
invariant subgroup H of G. The operators of H which are 
commutative with s3 constitute a subgroup of half the order of 
H. This subgroup Hl includes sv 82. 

As Hi contains only one operator of order 2, its Sylow sub­
groups of order 2m either are cyclic or they contain cyclic sub­
groups of half their order while the remaining operators are of 
order 4. They must therefore contain an odd number of cyclic 
subgroups of order 4 if they contain one such subgroup. If 
the order of Hx were divisible by 4, H would contain an 
operator of order 4 which would be transformed into its inverse 
either by sl or by s.d. Hence either H would contain more than 
three operators of order 2, or a divisor of G corresponding to 
an operator of order 2 in T would contain more than two such 
operators. As this is impossible, H contains only one subgroup 
of order 4, viz., the one generated by sv s29 and the order of H is 
not divisible by 8. 
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Two operators of order 2 in G which correspond to two 
distinct operators of order 2 in T have for their product an 
operator whose order is divisible by 5 but by no other odd 
prime, since sB is commutative with all the operators of Hv 

The order of this product could not be divisible by 4 since H 
does not include any operator of this order. Moreover, the 
two given factors may be so selected as to make the order of 
this product either 5 or 10. In the latter case they generate 
the dihedral rotation group of order 20. This group contains 
all the operators of order 2 in G except 8X and s2. These two 
operators are commutative with the operators of its cyclic sub­
group of order 10, but they transform the remaining operators 
into themselves multiplied by s}s2. Hence the operators of 
order 2 in G generate the group of order 40 which contains 13 
operators of order 2. 

As the order of Hx is not divisible by 4 and as Hx con­
tains only one operator of order 2, it is the direct product of a 
group of odd order and sxsr This group of odd order is clearly 
invariant under (?. In fact, i f is the direct product of this 
group and the group generated by sv sr Hence G contains 
the direct product of a group of odd order and the group of 
order 40 which contains exactly thirteen operators of order 2. 
I f G contained any other operators, it would contain this direct 
product as an invariant subgroup of half its order, and the re­
maining operators would correspond to operators of order 4 in 
T. The square of such an operator would therefore transform 
sl into s2, since s3 has this property. This is clearly impossible 
as sx has only two conjugates under 6?. 

We have now proved that G is the direct product of a group 
of odd order and the group of order 40 which contains just thir­
teen operators of order 2, whenever s3 transforms s, into s2 and a 
Sylow subgroup contains no operators of order 2 besides those 
contained in the octic group generated by sv s2, sB. Moreover, 
the direct product of any group of odd order and this group of 
order 40 possesses the properties in question. I t remains to 
consider the case when S contains more than one octic sub­
group involving sv s2. Each of these octic subgroups is trans­
formed into itself by every operator of order 2 contained in 8. 
There could not be more than three such octic subgroups in­
volving sv s2, since 8 cannot involve eleven operators of order 
2. If there were three, one would be invariant under 8. The 
operators of this subgroup would transform each of the others 
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into itself. Hence each would be transformed into itself by 
the other two, and the three would generate a group whose 
commutator subgroup would be 1, sxs2. As such a group 
would contain more than nine operators of order 2, S cannot 
contain more than two octic subgroups involving sv s2. 

As one octic group would transform one other octic group 
into itself, it would transform two of the five contained in G 
into themselves. Hence G would have to transform the five 
octic subgroups according to a transitive group of degree 5 
containing a transposition. This is clearly impossible. Hence 
G contains a set of two conjugate operators of order 2 only when 
it is the direct product of the group of order 40 which contains 
thirteen operators of order 2 and some group of odd order. 

§2. Proof that there is no Group in which the Number of 
Operators of Order 2 in a Complete Set of Conjugates 

is Three, Four or Five. 

If there were a set of three operators of order 2 which 
formed a complete set of conjugates under Gy they would be 
transformed according to a group of degree 3 by all the op­
erators of 6?. The subgroup H which would correspond to the 
identity in this group of degree 3 could not involve these three 
conjugates; for, if they were all contained in a four group, H could 
not contain the thirteen operators of order 2 since 13 4=3 mod 
4. Neither could H contain just seven operators of this order, 
since they would be included in an invariant subgroup of order 
8 and hence G would have to involve more than thirteen op­
erators of order 2. Since the number of operators of order 2 
which are in G without being also in I f is divisible by 6, no 
other numbers require consideration. If the three given op­
erators generated a group of order 8, this would be invariant, 
and hence this case is impossible. If the three conjugate op­
erators in question were not in Hy there would be just one more 
operator of order 2 in a divisor corresponding to a substitution 
of order 2 than in H. This is again impossible because 1 3 ^ 3 
mod 4. Hence there cannot be a complete set of three conju­
gate operators of order 2 under G. 

If G contained a complete set of four conjugate operators of 
order 2, at least two of these would be in a four group. If three 
of them were in this group, they would all be commutative and 
hence would generate an invariant subgroup of order 8. As 
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this is impossible, the four group which contained two of these 
four conjugates would not contain any other. I t is easy to see 
that this four group would be transformed into itself by the 
other conjugates and that the only case which requires further 
consideration is when these four conjugates generate an invari­
ant octic group, and when 8 contains nine operators of order 
2. No two Sylow subgroups could have only five common 
operators of order 2, since one of the remaining operators of 
order 2 in one of these Sylow subgroups could not transform 
the other into itself and hence would transform it into one hav­
ing additional operators of order 2. As this is impossible, any 
two Sylow subgroups would have at least seven common opera­
tors of order 2. 

The eight operators of order 2 which are not in the octic 
subgroup generated by the four conjugate operators in question 
would therefore be divisible into four pairs such that each pair 
with this octic group would generate a subgroup involving just 
seven operators of order 2. As the number of subgroups in­
volving nine operators of order 2 would be odd, and as all 
would be conjugate under (?, this is impossible. The impossi­
bility of constructing such a group G can also be proved by ob­
serving that the nine operators of order 2 in 8 would generate 
a group of order 32 which would have a commutator subgroup 
of order 2 and contain the given octic group as invariant sub­
group. As such a group cannot be constructed, it is proved 
that G could not contain a complete set of four conjugate 
operators of order 2. 

If G contained a complete set of five conjugate operators of 
order 2, it would transform them according to a transitive sub­
stitution group of degree 5. Let H represent the subgroup 
of G corresponding to identity in this transitive substitution 
group. As H cannot involve the five conjugate operators of 
order 2, it contains just three operators of this order. This is 
impossible, since each of these three operators would be com­
mutative with each one of the five conjugate operators of order 
2, and hence each divisor corresponding to a substitution of 
order 2 would contain just four operators of order 2. 

§ 3. Groups in which there is a Complete Set of Six Conjugates 
of Order 2. 

If G contains a complete set of six conjugate operators of 
order 2 it must transform them according to a transitive sub-
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stitution group T of degree 6. The conjugate operators of 
order 2 cannot be contained in the subgroup H which corre­
sponds to identity of T, since G cannot contain an invariant 
subgroup of order 8 which involves no operator of order 4. 
If these six conjugates correspond to the same substitution of 
T, H would contain five operators of order 2. The remain­
ing two operators could not correspond to this substitu­
tion of T. Hence they would correspond to another invariant 
substitution. This is impossible since T cannot contain two 
invariant substitutions of order 2. As every non-invariant 
substitution of order 2 has at least three conjugates under 7, 
the six conjugate operators in question correspond either to 
three or to six substitutions of T. 

In the latter case H would be of odd order ; for, if it were 
of even order the operators of order 2 which would correspond 
to two commutative conjugate substitutions of degree < 6 could 
not be commutative since their product could not be of order 
2. That is, there would not be a complete set of six conju­
gates of order 2 in G. If H were of odd order, only one op­
erator of G would correspond to each of the six conjugates in 
question, and at least one operator of order 2 would correspond 
to every substitution of order 2 in T. I t follows directly from 
the properties of the T's which have six conjugates of order 2 
that this is impossible, hence the six conjugate operators of 
order 2 in question correspond to three conjugate substitutions 
whose degree is < 6, and iJinvolves only one operator of order 2. 
I f these three substitutions of T were commutative, the corre­
sponding operators of order 2 would also be commutative, or 
else they would generate a group whose commutator subgroup 
is of order 2. 

The former of these two alternatives is clearly impossible. 
In the latter, the six conjugates in question would generate a 
subgroup of order 16, and a Sylow subgroup of order 2m would 
involve at least 11 operators of order 2. As this is impossible, 
it follows that the three conjugate substitutions of T which cor­
respond to the six conjugates in question must generate a group 
of order 6. These conjugates must therefore generate the 
dihedral rotation group of order 12, and hence this is an 
invariant subgroup of G9 and T contains an invariant subgroup 
of order 3. From this it follows that T is one of the two 
groups of order 12. 

We shall now prove that the order of H cannot be divisible 
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by 4. If it were divisible by 4, a Sylow subgroup of H would 
contain an odd number of cyclic subgroups of order 4. Hence 
one of them would be invariant under 8. If an operator of 
order 2 not included among the six conjugates in question 
transformed the generator of this invariant subgroup into its 
third power, it would correspond to the invariant substitution 
of T and together with the given generator would gener­
ate the octic group. The two operators of order 2 which 
would be in the same divisor but not in this octic group would 
transform this octic group into itself. Hence this octic group 
would be invariant under the group generated by all the opera­
tors of order 2 in G. As the operators of G which wTould cor­
respond to the invariant substitution of T without being in this 
octic group could not transform the operator of order 4 in this 
octic group into its inverse they would be commutative with it, 
and hence this divisor would contain operators of order 4. 
Such operators would be transformed into their inverse by 
some operator belonging to the six conjugates in question. As 
this would lead to operators of order 2 in a divisor correspond­
ing to another substitution of Ty it is impossible. 

If an operator of order 2 corresponding to the invariant sub­
stitution of order 2 in T were commutative with the given 
operator of order 4, it w7ould transform an operator of order 4 
corresponding to one of the six conjugates in question into its 
inverse. As this is clearly impossible, it is proved that H 
could not involve an operator of order 4 in case an operator 
of order 2 in G corresponds to an invariant substitution in T> 
We shall now prove that the order of H is not divisible by 4 
when each of the operators of order 2 in T corresponds to a non-
invariant substitution in T. If H contained operators of order 
4, such operators would correspond to each non-invariant sub­
stitution of order 2 in T. From this it follows directly that 
there would be operators of order 2 in the divisor correspond­
ing to the invariant substitution of T. As this is impossible, 
it is proved that the order of H is not divisible by 4. 

If the operators of order 2 which are not in the given set of 
six conjugates correspond to non-invariant substitutions of T, 
two operators of order 2 can be found such that their product 
is of order 12, since no operator of order 2 corresponds to the 
invariant substitution in T. Hence the operators of order 2 
in G generate the dihedral rotation group of order 24, and G 
is the direct product of this group and the largest subgroup of 
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odd order contained in H. Moreover, every direct product 
of this dihedral rotation group and an arbitrary group of odd 
order contains just thirteen operators of order 2 which have the 
property in question. 

If six operators of order 2 correspond to the invariant sub­
stitution of order 2 in T, they generate the dihedral rotation 
group of order 12, and H contains an invariant subgroup of 
order 3. As the largest subgroup of odd order in H transforms 
these six operators according to a group of odd order which has 
two transitive constituents of degree 3, it must contain an in­
variant subgroup of one-third its order which does not include 
the operator of order 3 in the said dihedral rotation group of 
order 12. Hence H is the direct product of a subgroup of 
order 2, a subgroup of order 3, and some group of odd order. 
Moreover, G contains the direct product of the dihedral rotation 
group of order 12, generated by the six operators of order 2 
which are transformed according to T, and the invariant sub­
group of order 3 in H. 

The six operators of order 2 which correspond to the invari­
ant substitution of T transform this direct product of order 36 
into itself and generate with it the group of order 72 which 
contains exactly 13 operators of order 2 and is generated by 
these operators. This subgroup of order 72 is invariant in G 
and has only identity in common with the given group of 
odd order in H. Hence G is the direct product of some 
group of odd order and this group of order 72 whenever some 
of its operators of order 2 correspond to the invariant substi­
tution of T, and every such direct product satisfies the condi­
tion in question. The result of this section may be expressed 
as follows : Whenever G contains six operators of order 2 which 
constitute a complete set of conjugates, its thirteen operators of order 
2 generate either a group of order 24 or a group of order 72 and 
G is the direct product of one of these groups and some group of 
odd order. Every such direct product contains exactly six 
conjugates of order 2, and involves 13 operators of this order. 

§ 4. Proof that there is no Additional Group in which the Num­
ber of Operators of Order 2 in a Complete Set of Conju­

gates is Seven, Eight, Nine, Ten, or Eleven. 

If there were a complete set of either seven, eight or nine 
conjugates of order 2, the remaining operators of this order 
could not be invariant, since G cannot contain the group o 
order 8 w7hich contains 7 operators of order 2 as an invariant 
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subgroup. These remaining operators could not occur in sets 
of conjugates, as these sets have been considered above. If G 
contained three invariant operators of order 2, while the remain­
ing 10 formed a single set of conjugates, the three invariant 
operators would generate the four group. As any one of the 
remaining operators of order 2 and this four group would 
generate the group of order 8 which has 7 operators of order 2, 
the remaining operators could be arranged in distinct sets of 
four operators, which is evidently impossible. 

If G contained two invariant operators, their product would 
also be invariant and hence there could not be a complete 
set of eleven conjugates. I t only remains therefore to consider 
the case where G contains a single invariant operator of order 2 
while the remaining 12 constitute a complete set of conjugates. 
I t will be found that there are groups which come under this 
case. Hence there are groups containing exactly 13 operators 
of order 2 in which these operators form sets of conjugates 
containing any of the following numbers of operators : 13 ; 1, 
2, 10; 1, 6, 6 ; 1, 12. 

§ 5. Groups in which there is a Complete Set of Twelve 
Conjugates of Order 2. 

Since such a G contains an invariant operator of order 2, it 
contains six conjugate four groups and transforms them accord­
ing to a transitive substitution group T of degree 6. If the 
operators H of G which correspond to the identity of T in­
cluded more than one operator of order 2, these six subgroups 
of order 4 would generate a group of order 2m involving 
thirteen operators of order 2. As this is impossible, T contains 
a complete set of either three or six conjugate substitutions of 
order 2 and of degree < 6, corresponding to the operators of 
order 2 in G. 

In the former case these three conjugate substitutions of T 
cannot be commutative, since all the operators of order 2 in G 
cannot be contained in a Sylow subgroup. Hence T is the 
group of order 12 which contains seven substitutions of order 
2. The four operators of G which correspond to the same sub­
stitution in T generate the octic group. As the operators of 
order 2 in the other divisions transform this octic group into its 
conjugates, these three conjugates have the cyclic subgroup of 
order 4 in H in common. Hence this cyclic subgroup is 
invariant under G From this it follows directly that H can-
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not contain any operator of order 8 ; for if H contained such 
an operator, its square would generate the only invariant cyclic 
subgroup of order 4, but this square could not be in the given 
octic groups. 

We shall now prove that the Sylow subgroups of H could 
not include the quaternion group. If this group occurred in 
H, a Sylow subgroup S of G would be of order 32 and would 
include two non-cyclic subgroups of order 16 which would 
involve only one operator of order 2. As it would contain 
another subgroup of order 16 involving a cyclic subgroup of 
order 8, it would contain just three cyclic subgroups of order 8. 
This is impossible since the number of such subgroups in a 
group of order 2m is even.* The order of H is therefore 
divisible by 4 but not by 8. As all of the operators of odd 
order in H transform each operator of order 2 in 6? into itself 
but some of its operators of even order do not have this 
property, the operators of odd order generate a subgroup in­
variant under G, and H is the direct product of this subgroup 
and its cyclic subgroup of order 4. 

Since the product of two non-invariant operators of order 2 
in G is commutative with every operator of H, these two oper­
ators may be so chosen that their product is of order 12 and 
hence the operators of order 2 in G must generate the dihedral 
rotation group of order 24 whenever four of the operators of G 
correspond to the same substitution in T. As this invariant sub­
group has only identity in common with the largest group 
of odd order contained in H, G includes the direct product of 
these two groups and its order is twice the order of this direct 
product. 

If an operator of order 4 corresponds to the invariant sub­
stitution of T, all the operators of this divisor whose order is 
a power of two must be of order 4. Such an operator trans­
forms each of the factors of the given direct product into itself. 
I t transforms the subgroup of order 24 according to an oper­
ator of order 2, while it may be either commutative with the 
other factor or transform it according to an operator of order 
2. In the former case G is the direct product of a group of 
odd order and the group of order 48 which involves just thir­
teen operators of order 2 and in which all the operators of order 
4 are commutative with the two operators of order 3» This 

* Transactions Amer. Math. Society, vol. 6 (1905), p. 59. 
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group of order 48 may also be defined by the fact that it con­
tains the direct product of the quaternion group and the group 
of order 3, and is generated by this direct product and an oper­
ator of order 2 which transforms the operators of order 3 into 
their inverses and the quaternion group into a contragredient 
isomorphism with itself. In the latter of the two cases men­
tioned above G? may be obtained by establishing an isomorph­
ism between this group and a group whose order is twice an 
odd number. 

When an operator of order 8 corresponds to the invariant 
substitution in T, all the operators of this divisor whose order 
is a power of two are of order 8. The remarks of the preced­
ing paragraph apply directly to this case, with the exception 
that the given group of order 48 is replaced by the one which 
is generated by the cyclic group of order 24 and an operator 
which transforms each operator of this cyclic group into its 
eleventh power. Hence there are two groups of order 48 which 
contain exactly 13 operators of order 2, twelve being conjugate, 
and transform their six four groups involving these operators 
according to just three distinct substitutions. All the other pos­
sible groups which have this property can be obtained by di­
midiating one of these two groups and a group whose order is 
twice an odd number and all such dimidiations give rise to 
groups having the required property. 

We shall now consider the case where these six four groups 
correspond to six distinct substitutions of T7. As these substi­
tutions form a complete set of conjugates and are of degree less 
than six, T is either the positive group of order 24 or the 
group of order 48. If it were the latter, it would contain an 
invariant subgroup of order 8 times the order of H. As this 
subgroup would contain only one operator of order 2, it would 
include a Sylow subgroup having this property. The order of 
this S could not be less than sixteen. Hence it would have 
operators of order 8. This is impossible. In fact it is at once 
evident that such an S could not have an (a, 1) isomorphism 
with a group involving no operator of order 4 unless the order 
of this group is less than eight. The groups in question must, 
therefore, transform the six conjugate four groups according to 
the positive group of order 24, which is simply isomorphic with 
the symmetric group of degree 4. 

The order of IT is not divisible by four, since the operators 
which correspond to the three conjugate substitutions in T 
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must be all of a higher order than those of H. This follows 
also from the fact that the quaternion group is the only group 
of order 2W involving only one operator of order 2 which has 
an operator of odd order in its group of isomorphisms. Hence 
H is the direct product of a group of order 2 and some group 
of odd order. Every operator of üTis commutative with each 
of the operators of the group generated by all the operators of 
order 2 in G. Two of these operators corresponding to two 
commutative substitutions in T generate the octic group. 
Hence all the operators of H are commutative with the opera­
tors of order 4 corresponding to the three conjugate substitu­
tions of T. That is, G contains an invariant quaternion group 
and this subgroup includes all its operators of order 4. 

Two operators of order 2 can be so selected that their prod­
uct is of order 3. This product and the given quaternion 
group generate a group of order 24 which is transformed into 
itself by any one of the operators of order 2. Hence the thir­
teen operators of order 2 generate a group of order 48, and G is 
the direct product of this group and a group of odd order. 
Moreover, any such direct product satisfies the given condi­
tions. The given group is completely defined by the facts that 
it is of order 48 and is generated by thirteen opérators of order 
2. The main results of this section are as follows : If a group 
contains just thirteen operators of order 2 of which twelve are 
conjugate, these operators generate either the dihedral rotation 
group of order 24 or the group of order 48 which may be rep­
resented as a transitive group of degree 8 and contains the 
quaternion group invariantly. In the latter case G is the 
direct product of this group of order 48 and some group of odd 
order. In the former case G contains one of two groups of 
order 48 and maybe constructed by dimidiating this group and 
a group whose order is twice an odd number. 

If a group contains exactly thirteen operators of order 2 
these operators must, therefore, generate one of the following 
five groups : The dihedral rotation group of order 24, the dihe­
dral rotation group of order 26 ; the group of order 40 which 
contains thirteen operators of order 2 ; the group of order 48 
which can be represented as a transitive group of degree 8 
having four but not two systems of imprimitivity ; or the group 
of order 72 which is generated by the direct product of the 
dihedral rotation group of order 12, an operator of order 3, 
and an operator of order 2 which transforms this operator of 



302 TYPES OF SERIAL ORDER. [Mar . , 

order 3 into its inverse and the non-invariant operators of 
order 2 in the dihedral rotation group of order 12 into them­
selves multiplied by the invariant operator of order 2. In case 
of the groups of order 40, 48 and 72 all the possible groups 
are obtained by forming the direct product of these groups and 
some group of odd order. 
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The Continuum as a Type of Order : An Exposition of the Mod­
ern Theory. With an Appendix on the Transfinite Numbers.* 
By EDWARD V . HUNTINGTON. Cambridge, Mass., The Pub­
lication Office of Harvard University, 1905. 4to. 63 pp. 
Price, 50 cents. 
T H E Annals of Mathematics has for some time followed the 

plan of printing articles expository of subjects which are little 
known or not easily accessible in the English language. Re­
prints of these articles are then placed on sale with the double 
and laudable purpose of making the circulation of the article 
wider than it would otherwise be and of helping solve the diffi­
cult problem of financing a mathematical journal. 

The plan can hardly fail to succeed if all the articles are as 
clear in style and as just in the balance between generality and 
detail as is that of Professor Huntington. In point of readable-
ness, we are inclined to think that the only other exposition of 
subjects connected with the foundations of mathematics which 
can be compared with Huntington's is that (in French) of L. 
Couturat. 

The principal contents of the paper are the ordinal theory of 
integers, rational numbers, and the continuum, together with 
an appendix on the transfinite numbers of Cantor. I t is in­
tended for non-mathematical readers as well as for mathe­
maticians, and therefore presupposes very little in the way of 
detailed knowledge, though of course it requires for complete 
comprehension a considerable maturity in abstract reasoning. 
We have noticed only one error of any consequence. I t is 

* Reprinted from the Annaîs of Mathematics, second series, vol. 6, No. 4 
(July, 1905), and vol. 7, No. 1 (October, 1905). 


