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T H E E X T E R I O R AND I N T E R I O R O F A P L A N E 
CURVE.* 

BY DR. G. A. BLISS. 

T H E theorem that a continuous closed curve without double 
points divides the plane into two regions, an exterior and an 
interior, has been discussed by several writers. Jordan f and 
Schoenflies J assume the theorem for polygons and then extend 
it to apply to more general curves by processes which are 
extremely complicated. In the March number of the B U L ­
LETIN, Ames has sketched an apparently simpler method 
which applies to the so-called regular curves. The writer 
ventures to give below another proof for a class of curves 
which is more general in that the tangent is not assumed to 
exist, but which on the other hand may not include all of the 
regular curves. Polygons, curves consisting of a finite number 
of analytic pieces, and regular curves of the type treated by 
Schoenflies, are among those to which the method applies. 

§ 1. Hypotheses on the Curve, 

The curve C is taken in the form 

(i) *=<KO, 2 / = m 

where <£, yfr are considered for values of t in the interval 

IT] t^t^T 
and are supposed to have the following properties : 

1) <£, yjr are continuous on [Î7] ; 
2) the curve is closed, i. e., 

but otherwise has no multiple points ; 
3) the function <£ is an increasing § or a decreasing function 

for all but a finite number of points of [ T ] . 

* Read before the Mathematical Club of the University of Chicago, Octo­
ber 23, 1903. 

t Cours d' Analyse, vol. 1, pp. 91-99. 
% Göttinger Nachrichten, 1896, p. 85. 
§ A function is said to be increasing at a point t' when an interval \tl —à, 

t' ~f- <T] can be found such that 
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The parameter representation can be so arranged that the t 
values mentioned in 3), the maxima and minima of <f>, are 

where tk_1 < tw (k = 1, 2, • • -, n), and tQ} tn correspond to the 
smallest value of x on the curve. 

Consider the interval \tkr_v £7J.* On account of 3) the func­
tion x = <p(t) is monotonie in this interval, and consequently the 
inverse function t = t(x) is single-valued and continuous in the 
interval [xk_v xh~\, when xk_l and Xj a r e the values of x corre­
sponding to tk_x and tk respectively. 

By substitution in (1), 

which is also a single-valued continuous function of x in 
LXIc-V XJc\' 

The curve is therefore divided into n continuous pieces Ch 

(k = 1, 2, • • •, ri). Any piece Ch has its endpoints (xk_v yk^, 
(xv VÙ m common with Ok_1 and Ck+1 respectively, but other­
wise has no intersections with the other pieces. 

§ 2. Classification of the Points of the Plane by Means of 
a Continuous Function g(x, y). 

Consider the piece Cv The two pieces of horizontal lines, 
y = y0 for x^x0, and y ~yx for x=xx, adjoined to Cl (Fig. 1), 
together define a continuous function 

y=:Yx(x), [—oo < a s < + oo]. 
The equation 

9ifa y) = y - Yi(x) 

<j)(t) < (t>(t' ) for t' — a < t < t', 

<!>(*) >W) tort'<t<t'+â. 
This third assumption is made also by Jordan, Cours d'Analyse, vol. 2, p. 

132, in reducing to a line integral the integral 

ff^dxdy, 

taken over a region bounded by a curve. 
* The interval in which a function is to be considered will always be indi­

cated as here by a square bracket. 



400 EXTERIOR AND INTERIOR OF A CURVE. [May, 

defines gx as a function of x and y, continuous over the whole 
plane. The product 

n 

has the same property, where ^ (& = 1, 2, . • -, n) is supposed to 
have been formed from Ch in a manner analogous to the forma­
tion of gv 

Neat a point of (7, g can take both positive and negative 

F I G . l . 

values. For if (£, rj) is in C7c but not an end point, then for 
points on the line x = f, the function g has the form 

(2) 9(t,y) = (y-vT»+im,y), 
where g =}= 0 in the neighborhood of y = y. This follows be­
cause the factor <77c(£, y) has the form 

& ( & 2/) = 2/ - *?• 

I f any other factor #A has the value y — rj for x = f, then either 
<7A_i or (7A + 1 has the same value. Similarly g takes opposite 
signs near the end points of Ok because they are the limiting 
points of the interior points of the piece. 

In the neighborhood of any point (f, rj) not on C, g always 
takes values different from zero, but never takes values oppo­
site in sign. For near such a point, g has the form 

(3) g(x> y) = (y- v)2lu9(x, y), 

where g =|= 0 in the neighborhood of (f, rj). 
The points of the plane can now be classified into : 
1) points of O, near which g takes both positive and negative 

values ; 
2) interior points, near which g takes negative values but no 

positive ones; 
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3) exterior points, near which g takes positive values but no 
negative ones. 

If i(£, rj) is an interior (exterior) point, then it is always pos­
sible to find a circle about i in which all the points are interior 
(exterior). This follows from (3) if the circle is taken so small 
that g =|= 0 in it, and furthermore of radius smaller than the 
shortest distance from i to the pieces Ck which give rise to 
factors in the form y — rj. For in such a circle these factors 
all retain the same form, and g has consequently the sign of 
V(Z> v) at every point of the circle where it does not vanish. 

§3. Curves Joining an Interior with an Exterior Point 

Suppose a curve 

D : x = / ( T ) , y = g(r), 

starting at an exterior point for T = T0, and attaining an interior 
point for T = TX (T0 < rx). Let T' be the upper bound of the r 
values such that the interval [r0, r ] defines only exterior points 
on D. rf can not correspond to an interior (exterior) point 
(xf, yf), for then all points in a certain circle about (xf, yf) would 
be interior (exterior) points, and consequently T' would be too 
large (too small) to be the upper limit in question. I t must 
therefore define a point of the curve C, 

If a continuous curve joins an exterior point with an interior 
point, it must have on it at least one point of C. 

§ 4. Construction of I-Curves and E- Curves Parallel to C. 

For purposes of construction two positive quantities 8 and e 
can be selected so that for k = 1, 2, 3, • • -, n, 

l) B < \ I xu - xicri | ; 
2 J e < smallest distance from Ck to any non-adjacent piece ; 
2,) 2e < smallest distance from Ck on [xk_v x7 + ( — 1)*S] 

to Gk+l. 
By means of the curve pieces 

c'k: y = XÂX) + ( - i)*6* lxk-v xk] 9 

a closed continuous curve can be constructed which does not 
intersect C Consider for example C[ and C'r On account 
of 2a) the only pieces of C which C[ can intersect are Cn and 
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029 and from 26) it can intersect C2 only on \xl —• 8, œ j . If 

yjr2(x) - ir^x) > 0 

for all points common to [x0, xt~] and [xv x2~] (see Fig. 2), then 
G[ and C2 have no points of intersection, but their ends on the 

FIG. 2. 

ordinate x = xx can be joined by a semicircle in the half-plane 
x —: cc, with radius e and center (xv y^). The semicircle has no 
points in common with O on account of 2J , and the resulting 

FIG. 3. 

continuous curve formed by joining C'v C2 in this manner does 
not intersect Gx or (72. 

On the other hand if 

(̂«O - fi(x) < ° 

(Fig. 3), then C[ and 02 will intersect for some smallest value 
x' between xl — S and xv For at x = xx — S 

(^2 + e) - ( ^ - e) = ^2 - ^ + 2e < 0 
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on account of 26), and at x = xx 

(t2 + «) - (f, ~ «) = + 2e > 0. 
I f now the points of G[ and (7 g between cc; and xx are dis­
regarded, then the resulting curve is continuous and does not 
intersect either Cx or C2. 

Suppose the same process carried out for each pair Ck, Ck+V 

The result is a continuous closed curve Df which does not in­
tersect C. For any C'h can only intersect C k_x or Ok+v and 
it has been joined with Ck_x so as to avoid intersection with Ck_v 

and with C'k+l so that it does not intersect Ck+l. 
A similar curve D" can be constructed out of the pieces 

G"k: y=irk(x)+{-\f-% [**_„ *,,+(-1)*S]. 
I t is easy to show that D' and D" lie on opposite sides of C. 
For the two points (x0 + 8, ̂ i(^0 + 8) =b e) lie on D' and If' 
respectively, and are furthermore on opposite sides of C, as one 
discovers from the behavior of g(x, y) (see equation (2)). 

The result is then that for a given 8, e satisfying 1), 2 J , 26), 
two curves parallel to C can be constructed, the one entirely in­
terior (I-curve), the other entirely exterior (E-curve) to 0. I t 
should be noticed that the part of Df due to Ck is cut by every 
ordinate on [xk_t + (— l)*""1^ xk + (— 1)*S]. 

§ 5. Curves Joining Two Interior (Exterior) Points Without 
Intersecting the Curve C. 

Consider first a single interior point i (£, ??). On x = | 
there are at most a finite number of points of C because the 
number of pieces Ck is finite. There must be one at least with 
ordinate > v, for otherwise i could be joined to a point for 
which g > 0 by the ordinate x = £. Suppose the nearest to 
(£, rj) lies on Ck) and let S and e be again restricted as follows : 

a) when £ = xk or ^ = 03A._1 take d as in 1), and e satis­
fying 

besides 2 J , 26); 
b) when f lies between xk_1 and œA, take S satisfying 

1 J 8 < | f — a * - i | and < | f f — ajj 

besides 1), and e as in a). 
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In either case the point (f, ^7 /£) — e) lies on the J-curve 
corresponding to these values of e and 8, on account of § 3 and 
the fact that no point of G lies on the segment of x = £ which 
joins (f, V) and ( f , ^ ( $ — e).^ 

Any exterior point can be joined by straight line segments 
not intersecting C with another point of the same kind e(f, y), 
for which £ lies between the maximum and minimum values of 
x on (7. The construction given above with slight modification 
can then be applied in order tc join e with an i?-curve. 

In a similar manner an I-curve (E-curve) can be found with 
which any two interior (exterior) points can be connected by means 
of straight line segments not intersecting G 

§6. Some Classes of Curves to Which the Preceding Results 
Apply. 

A curve consisting of analytic * pieces can be represented in 
the form described in § 1 by choosing for the y-axis a direction 
a which is not parallel to any straight line piece. The only 
points where x can have maxima or minima are tk& «nd.« of the 
pieces and points where the tangent is parallel to tne y-SLXits. 
The latter are finite in number. For on any piece not a straight 

line, the fraction §' \v (§> + ty'*) is everywhere analytic and 
not constant. I t would take the value cos a an infinity of times 
only if it were constant and equal to cos a on the whole piece. 

In a similar manner the Schoenflies curves will have the de­
sired form provided that the y-axis is not parallel to one of the 
straight pieces. For on the other pieces the direction of the 
tangent is presupposed to vary monotonically. 

By properly choosing the coordinate axes the curves of charac­
ter described m § 1 can be made to include all those consisting of 
a finite number of analytic pieces, all the curves considered by 
Schoenflies, and all the so-called regular curves for which there 
exists a direction parallel to only a finite number of tangents to 
the curve. 

THE UNIVERSITY OF CHICAGO, 
October, 1903. 

* J. e., on each piece <j> and ^ are given by continuations of a single pair of 
analytic functions. Furthermore </>'2 -\-^'2 is supposed + 0 except at per­
haps a finite number of points, which can be made the end-points of pieces. 


