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T H E APPLICATION OF THE FUNDAMENTAL 
LAWS OF ALGEBRA TO THE MULTIPLI­

CATION OF INFINITE SERIES. 

BY PROFESSOR FLORIAN CAJORI. 

T H E present writer has given examples in which an abso­
lutely convergent series is obtained as the result of multi­
plying two conditionally convergent series together, or of 
multiplying one conditionally convergent series by a diver­
gent series.* 

He has also given an example of two divergent series 
whose product is absolutely convergent.f 

Pringsheim has treated this subject from a more general 
point of view and by very simple methods has shown that 
the property in question is typical of certain classes of 
series. J 

In the present paper it is proposed to establish a class of 
series with real terms, possessing the property alluded to, 
but which seems to be distinct from the class given by Prings­
heim. Next, we shall consider the validity of the funda­
mental laws of algebra in the multiplication of infinite 
series. Then, with aid of our conclusions relating to these 
laws, we shall point out another method for obtaining 
divergent series whose product is absolutely convergent. 
Lastly we shall generalize a theorem of Abel on the multi­
plication of series. 

§ 1 . 
In the series S1 and S2, obtained respectively by remov­

ing the parentheses from the series 

v=0 

S2' = 2 (bi0 + frtv+i — &4w+2 — biv+i), 

wherein the a's and Vs are real and positive, let the follow­
ing conditions be satisfied : 

(1) The wth term in Sx and in S2 shall be z==v~% where 
J < r ^ 1, but %as and 2&s are both divergent. 

* Trans. Amer. Math. Society, vol. 2, pp. 25-36, January, 1901. 
f Science, new ser., vol. 14, p. 395 (September 13, 1901) 
t Trans. Amer. Math. Society, vol. 2, pp. 404-412, October, 1901. 
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( 2 ) a^y = tt4i;f2? &4v-fl = = : tt4v+S> 04t; = 6 4 v + 1 , 6 4 ^ 2 = Ojv+s J 

the binomials 

shall each differ from eiv+2 by less than ^ + 2 ? where 

-, A > 1, and k9 • 

The (4n)th term of the product of Si and $2 is 
»=n—1 

2 C — ^4u ' ai{n—v—1)4-3 ~T 04»-H • <X4 (-n_„_1 ) + 2 4 " #4v+2 * &4(n—1>—1)4-1 
»=0 

t>4j,+3 • « ^ ( „ ^ ^ „ i ) ) , 

v=nt—1 
5 = 5 2 Î ^iv\aMn-^v—l)+2 C&4(n_^,_1 ) + 3) 6 4 v + 2 ( ^ ( ^ ^ „ i ) #4(n--v--l)-f l ) J 

t>=0 

v=n—1 

+ X l t t4(n—v—l)+l(^4<H-2 04v) (*4(n_v-_i)(04 l ,+3 "— 6 4 v + 1 ) J 

=n'—1 

2 C ^ v ^4v4-2)(0f4(n—v—1) Ct4(n—v—l)-fl ) 

v=n—1 

~T ^ ( ö 4 v &4v-j-2)(#4(w-i;—1) ai(n—v—l)+l)> 

or numerically 
v=n /—1 v=n—1 

Zr> 4 ^ 4 v + 2 • 6^(n—«—l) ~T i f 4 £ 4 v + 2 * £4(n—v—1) 
v=0 

< ce4(n_n0 + o'ew , ( I ) 

where r=w/_i «=*_! 
c== 2 4e4v+2? ci = 2, 4£4(n_v_1), 

n' = |-(n — 2) or J (n —-1) according as n is even or odd. 
Each of the terms in (I) is of the same order of mag­

nitude as -—TT—r-Tv 
4n(^4n)A 

The same reasoning which we used with the (4n)thterm can 
be applied to the (4w + l) th ? (4n + 2)th, (4w + 3)th term. 
Thus in the product of the two conditionally convergent 
series 6\ and S2 each term is numerically less than the corres­
ponding term of a series known to be absolutely convergent. 
Hence the product of S1 and S2 is absolutely convergent. 
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As an example, we give the two series 2\ and T21 ob­
tained respectively by dropping the parentheses from the 
following series : 

v=o° / 1 1 1 1 \ 
1 ~ S \ W + 1 4vr + 4 4vr + 1 4vr + 4 / ' 

»=°° / 1 1 1 1 \ 
^2' S S Uvs + 4 + 4vs+ 4 "~ 4tf + 1 "~ Ï Î T + l r 

where ^ < r ^ l and J < s ^ l . Tj and T2 are each con­
ditionally convergent ; their product is absolutely conver­
gent. 

§2. 
The behavior of infinite series with respect to the funda­

mental laws of algebra may be considered under two heads: 
An inquiry into the validity of the laws (1) when applied 
to the terms of an infinite series, (2) when applied to the 
infinite series themselves. 

The first inquiry has led to the result that the associative 
law can always be applied to the terms of a convergent in­
finite series, but that the commutative law can be applied, 
in general, only to the terms of an absolutely convergent 
series. 

The second inquiry has been made for the addition (and 
subtraction) of infinite series but, so far as we have seen, 
not for their multiplication with each other. 

The product of 

U = *2un and F s ^ \ 
n=0 n=0 

has been defined by Cauchy to be 

« = 0 0 

2 OoV» + UlVn-l + '" + Vo)« 
w=0 

Law of Association.—This law can be applied without limi­
tation to the multiplication of series. 

n=oo 

To show this, let W = 2 w
ni where wn, as well as un and 

vn given above, are finite constant numbers, real or com­
plex. Then we have (UV) W= U( VW)} for the (n 4- l ) t h 
term in the product ( UV) Wis 



2 3 4 MULTIPLICATION OF INFINITE SERIES. [ M a r c h , 

Oov„ + v»-i + - + « A H 

+ KV0>n' 

The (n + l ) th term of the product Ï7( VW) is 

"o ( % + wivn-i + "' + wnv0) 

+ ^ {WQVn_x + WJ)n_2 + "• + ^n-1 %) 

+ ^2 (W0
Vn-2 + •" + WH_2 V0) 

+ un (w0v0). 

These two expressions for the (n + l ) t h term, for any 
positive integral value of n, no matter how large, are seen 
to be identical as soon as we give our assent to the following 
two statements : 

1. For w > q, where q is any positive finite number, we 
have always 

%(™<Pn~p + W^n-p-l + -• + t t W o ) = UPW0Vn-p + - + UpWn_p VQ. 

2. For n > q, we are allowed to commute the terms ob­
tained by removing the parentheses, provided of course 
that no terms be dropped from the total aggregate and no new 
terms be admitted to it. I t will be seen that this special 
case does not contradict our previous statement that the 
commutative law is not, in general, applicable to the terms 
of series not absolutely convergent. 

The first expression for the (n + l ) th term assumes the 
form of the second if in the first we perform in each row 
the indicated multiplication, then add the columns from 
left to right, and factor. 

Since the (n + 1 )th term in ( UV) Wis the same as the 
(7i+l) th term in U(VW), no matter what positive inte­
gral value be assigned to n, it follows that the two products 
are identical. Thus the associative law is always obeyed. 

Law of Commutation.—Cauchy's definition makes the pro­
duct Xu

n • 5X ^ n e s a m e as the product %vn. %un, so that the 
commutative law holds for two factor series. Being per­
mitted to assume the associative law, it follows easily that 
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the commutative law is valid for three or more factor series. 
Thus, 

UVW= U(VW)= U(WV) = UWV= (UV)W= (VU)W 
= ruw= v{wu) - vwu= w(uv) = wuv= W(VÜ) 
= wvu. 

Law of Distribution.—That U(V+ W) = ÜV + C/TTcan 
be shown in a manner similar to our proof of the associa­
tive law, viz: find the (n + l ) t h term of U(V + W) and 
the (n + l ) t h term for UV 4- UW. Then assuming the 
commutative and distributive laws to hold for the aggre­
gate of terms involved in one of the expressions, change 
it into the other. 

§ 3-
Proceeding as does Pringsheim, let 

/o>o = T(- i )v , en.) 
v— 0 

where av is of the same order of magnitude as v~r, ^ < r < l . 
Here x = — 1 is a singular point on the circle of convergence 
and ƒ(— 1) is an infinity of the same order as (1 — l)~~(1~r). 
If the series ( I I ) is raised to the positive integral power p, 
then the sum of the resulting series, for x = — 1, is of the 

same order of infinity as ( 1 — 1 }-vv-^\ If the power p g , 

then the order of infinity is not lower than the first. But, for 
x= + 1, series ( I I ) becomes a special case of 81 of § 1 . 
Hence the jpth power of Sl is divergent, when av is of the 
same order of magnitude as v~r.* 

In the same way it can be shown that the pth power öf 
series #2 is divergent, when bv is a magnitude of the same 

order as v~r, \ < r < 1, and p = _̂  » But S1 • S2 was shown 

to be absolutely convergent. We have #, • S2- Sx- S2 ••• (to p 
pairs of factors) = (SXS2) (SA) ••• (to p parentheses). Hence 
the product of these 2p series is absolutely convergent. But, 
by the associative and commutative laws, this product is 
equal to Sf- S2

P. Thus, Sx* and S2
P are two divergent series 

whose product is absolutely convergent. Observe that, no 

matter how much p is in excess of that is, no matter 
1 — r 

how high a power of S1 and S2 is taken—we have, for a given 
value of r, always an absolutely convergent product result-

* Pringsheim, loc. cit., pp. 409-411. 
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ing from the multiplication of 8\p by S2
P. Special example : 

T* • T.* is absolutely convergent, but 1\B and T* are each 
divergent when r < § and * < §. 

In the divergent series 8/ the terms increase without 
limit in numerical value, as v increases without limit. The 
same is true of S2

P. Herein lies the difference between this 
pair of divergent series yielding an absolutely convergent 
product, and the pair given by Pringsheim.* In the latter 
the terms of the divergent series remain finite as v increases 
indefinitely. 

From the relation S^SA ••• = 8l
p-82

p we see that there are 
cases in the multiplication of series in which divergent ser­
ies may be used with safety—the sum of the final product 
series being convergent and equal to the product of the sums 
of the initially given convergent factor series, even when the 
product of some of the given factor series is divergent. 

If two or more convergent series, when multiplied together, yield 
a convergent product series s then the sum of this product series is 
equal to the product of the sums of the factor series. 

This theorem was proved by Abel for the case of two 
factor series,f and his method of proof is applicable to the 
general case. The extension is obvious. 

COLORADO COLLEGE, COLORADO SPRINGS, 
December 27, 1901. 

CONCERNING THE CLASS OF A GROUP OF ORDER 
pm THAT CONTAINS AN OPERATOR OF 

ORDER pm~2 OR pm~\ p BEING 
A PRIME. 

BY DR. W. B. FITE. 

(Read before the American Mathematical Society, December 28, 1901.) 

I F a non-abelian group of order pm contains an operator 
of orderpm~l it is of the second class. J I t is the object of 

* Lor. cit., p. 409. 
t Oeuvres complètes de N. H. Abel, Tome Premier, 1839, "Recherche 

sur la série 1 + T-#H y—=— x2 + . . . , " Theorem VI. 

t Burnside, Theory of Groups, p. 76. If we form the group of co­
gredient isomorphisms G' of G, then the group of cogredient isomorphisms 
G// of G\ and s » on we finally come either to identity or to a group that 
has no invariant operators except identity, and is therefore simply iso­
morphic with its group of cogredient isomorphisms. The groups for 
which this process leads to identity are classified according to the number 
of these successive groups of cogredient isomorphisms. 


