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tions shown under cartesian form. The surfaces having 
for curvilinear directors x — y «*= 0 and xy — J = 0 were 
studied in detail and models exhibited showing their prin­
cipal types. 

Professor White's paper was a further development of 
the topic considered in the paper presented by him 
at the Columbus meeting of the Society. Each mixed 
concomitant (2, 2) of the cubic defines (as in the paper 
referred to) two covariant nets of conies. These are 
polars of two cubics of the syzygetic sheaf ; the totality 
of such is exactly that entire sheaf of cubics. But these 
concomitants (2, 2) and all the concomitants (3, 3) serve 
to define also four covariant sheaves of cubics, not in the 
syzygetic sheaf, intimately connected on the one hand with 
the four inflexional triangles, and on the other hand with 
the eighteen collineations of the cubic into itself. This 
paper will be published in the Transactions. 

THOMAS F. HOLGATE. 
Secretary of the Section. 

EVANSTON, I I I . 

ON CYCLICAL QUABTIC SURFACES IN SPACE OF 
N DIMENSIONS. 

BY DR. VIRGIL SNYDER. 

( Read before the American Mathematical Society, December 28, 1899. ) 

T H E generation of the cyclide as the envelope of spheres 
which cut a fixed sphere orthogonally and whose centers 
lie on a quadric can readily be generalized to space of n 
dimensions. 

In ordinary space it appears that the same surface is the 
envelope of five different systems ; that the quadric loci of 
centers are all confocal and the associated spheres are all 
orthogonal ; that the possibilities of the system are exactly 
coextensive with the oo13 possible cyclides. 

Let 
n n 

(1) (Xx — ixn+2) 2 Vr ~ 2 2 Xr+iyi + Oi + &» + l) = 0 
r = l r=l 

be the equation of a sphere in En ; it contains n + 2 homo-
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geneous constants xr, and if the radius be denoted by 

^ n - f 3 

xx — ixn + 2 

the quadratic identity 
n+3 

(2) *= %xr
2 = 0 

will exist among these n + 3 numbers xr, which may be 
called the homogeneous coordinates of the sphere. 

Two spheres a, b will intersect orthogonally when 

n+2 

r—l 

the terms defining the radii of the two spheres not oc­
curring ; hence any linear equation of the form 

n-f-2 

(3) j > r a r = 0 

represents the oon spheres which cut a fixed sphere orthog­
onally. 

ISTow consider a quadratic equation of the form 

( 4 ) ?2(>1, #2, - , » n + ï ) = 0 

which does not contain rcw+8, and make it simultaneous with 
(3); between the two xx + ixn + 2 may be eliminated, leaving 
a quadratic equation among the point coordinates of the 
centers of the variable spheres. 

Hence, equations (3) and (4) define the oon~1 spheres 
which cut a fixed sphere orthogonally, and whose centers 
lie on a quadric surface Jfw

2-i. These spheres envelop a new 
surface whose equation may be found as follows : 

Let xx — ixn+2 be replaced by xv as xx + ixn+2 has been 
eliminated between (3) and (4). Similarly, let xl + ixn+t 
be eliminated between (3) and (1). Then, with a slight 
change in the meaning of the coefficients, the problem re­
duces to that of finding the envelope of the sphere 

n 

s = x1 K+2G/1
2+2/2

2 + -"+2/n
!i)— oJ — 2 2av+ i (X + 2 2/r-a,+ i) 

= 0, 
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subject to the condition, say f(xv xv •••, xn + 1) = 0. 
Since the sphere s is to touch the envelope ƒ, it may be re­

garded as the equation of the point of contact, and ƒ as the 
equation of the surface itself, in tangential coordinates, hence 

and corresponding coefficients must be proportional, 

dxr dxr 

Between these n + 1 linear equations in xr and the equa­
tion s = 0 the numbers xr and A may be eliminated, giving 

(«) 

dy dy ay 
dx* dxfix% dxfixn 

y%Vr 

ay dy dy 
3 ^ ~9< '"dx2dx~n

 a » - ^ i a » + s 

dy dy 92/ 

an+ilVr— a, a2—2ylan+2-
i 

= 0 

or the Hessian of ƒ bordered by the coefficients of xr in s. 
This proves that the envelope is a cyclical surface, and the 

number of constants in the most general surface of this kind, 
viz., J (V + 5w + 2), exactly coincides with the number 
of constants in ƒ, %n(n + 3), plus the number in (3), n + 1, 
so that all quartic cyclical surfaces can be generated in this 
way. This does not show, however, in how many ways 
the same surface may be generated. 

Let the two forms 

be subjected to any linear transformation, such that % = 0 
may go into itself, and <p2 may become a sum of squares of 
the form 

(5) F=nî\rxr* = 0; 
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further, suppose the restriction be also imposed that #n + s 
shall go into itself. Equation (5) represents a complex of 
spheres ; in the vicinity of any of its spheres z it may be 
replaced by the tangent linear complex 

n + s a r r 

so that all of the spheres which belong to F and touch z 
must touch it in points of its Jfn

2i_2
2 of intersection with the 

fundamental sphere of the tangent complex. "When 

these two spheres touch each other. The if,?L2
2 reduces to 

a point, and z is a singular sphere. 
Let dF/dz = tr ; now t is also a sphere which touches z, 

and the whole tangent pencil can be represented in the form 

mr = tr 4- ter = bzr + ter = zx (br + A). 

The sphere m touches z, which is also a sphere, hence 

n~f- 3 n-\- 3 

X mrav = 0, 2 zr
2 = 0, 

r = l r = l 

or, replacing zr by its values, 

Those values of m which satisfy these two equations de­
fine the singular sphere of a quadratic complex for every 
value of A, hence the whole pencil of complexes have the 
same surface of singularities. The original complex is con­
tained in the series, corresponding to À = oo. 

The A éliminant of these two equations will give the equa­
tion in tangential coordinates of the surface of singularities ; 
the surface is seen to be of class 4n. 

Among the quadratic complexes of the pencil are n + 3 
simple ones counted twice, corresponding to A = —- br. When 
A = — 6»+8 this becomes the complex of points in En which, 
combined with x = 0 and with the other terms of the 
complex 

2 - = 0 
r=ibr—bn+s ' 
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defines a general cyclical surface. But the envelopes of 
the other n + 2 systems corresponding to A = — br (r = 1, 
•••, n + 2) define the same surface. Now xr = 0 represents 
the totality of spheres which cut a fixed sphere orthogonally, 
and when associated with A = 0 defines all those spheres 
whose centers also lie on a quadric, hence by (a) they en­
velop a cyclical surface. The fundamental spheres of 
these n + 2 systems are by (3) mutually orthogonal, and 
the quadrics are confocal since A = 0. Hence 

An Mn-\ in (euclidean) Rn which contains the absolute as a 
double Ml'l 2 can be generated in n + 2 ways as the envelope of 
those hyperspheres which cut a fixed hypersphere orthogonally and 
whose centers lie on a i/^_%. The fixed spheres are mutually or­
thogonal and the quadrics are confocal. 

The M£A2, intersections of the ifn
2_i and the hyperspheres, 

are all focal spreads of the cyclical surface. Through the 
center of each sphere passes a bitangent cone M*^ whose ele­
ments are perpendicular to the elements of the asymptotic, 
cones of the Jf;Li. 

By giving X different values in the system 

2 r ^ - 5 - 0 , *„ + s = 0 , 

a series of confocal cyclical surfaces is obtained. By sub­
stituting the coordinates of a point sphere in the equation, 
n different values for A can be found ; hence, n cyclical sur­
faces of a confocal system pass through every point in space ; by 
applying the tangent complex to each and using (3) it ap­
pears that these cyclical surfaces intersect orthogonally. 

For n = 2 these surfaces (bicircular quartic curves) have 
been systematically studied, from a different point of view, 
by Casey, Darboux, Cox, Loria, and others ; for n == 3 
(cyclides) by Casey, Maxwell, Cayley, Darboux, Reye, 
Loria, Bôcher, Domsch, Loewy, Moutard ; and many special 
points have been noticed in numerous othpr papers. 

The method here given is a generalization of that first 
employed by Darboux, using Lie's more general coordinates. 
The latter were first systematically employed in an article 
by the author, read at the Toronto meeting of the AMER­
ICAN MATHEMATICAL SOCIETY, and published in the BUL­
LETIN, volume 4 (new series), pp. 144-154. 

For n = 4, the number of distinct types is 58, and for 
larger values of n the number of types has not been deter­
mined. 

CORNELL UNIVERSITY, 
November 2, 1899. 


